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Graph-structured data arise naturally in many different application domains. By representing data as graphs,
we can capture entities (i.e., nodes) as well as their relationships (i.e., edges) with each other. Many useful
insights can be derived from graph-structured data as demonstrated by an ever-growing body of work focused
on graph mining. However, in the real-world, graphs can be both large – with many complex patterns – and
noisy which can pose a problem for effective graph mining. An effective way to deal with this issue is to
incorporate “attention” into graph mining solutions. An attention mechanism allows a method to focus on
task-relevant parts of the graph, helping it to make better decisions. In this work, we conduct a comprehensive
and focused survey of the literature on the emerging field of graph attention models. We introduce three
intuitive taxonomies to group existing work. These are based on problem setting (type of input and output),
the type of attention mechanism used, and the task (e.g., graph classification, link prediction, etc.). We motivate
our taxonomies through detailed examples and use each to survey competing approaches from a unique
standpoint. Finally, we highlight several challenges in the area and discuss promising directions for future
work.
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1 INTRODUCTION
Data which can be naturally modeled as graphs are found in a wide variety of domains including the
world-wide web [Albert et al. 1999], bioinformatics [Pei et al. 2005], neuroscience [Lee et al. 2017],
chemoinformatics [Duvenaud et al. 2015], social networks [Backstrom and Leskovec 2011], scientific
citation and collaboration [Liu et al. 2017], urban computing [Zheng et al. 2014], recommender
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Fig. 1. Attention is used to assign importance to each type of neighbor. The link size denotes how much
attention we want to apply to each neighbor. In this example, we see that by using attention to focus on a
node’s classmates, we can better predict the kind of activity the target is interested in. Best viewed with color.

systems [Deng et al. 2017], sensor networks [Aggarwal et al. 2017], epidemiology [Moslonka-
Lefebvre et al. 2011], anomaly and fraud analysis [Akoglu et al. 2015], and ecology [Allesina et al.
2005]. For instance, interactions between users on a social network can be captured using a graph
where the nodes represent users and links denote user interaction and/or friendship [Backstrom
and Leskovec 2011]. On the other hand, in chemoinformatics, we can build molecular graphs by
treating the atoms as nodes and the bonds between atoms as edges [Duvenaud et al. 2015].

A large body of work – which we broadly categorize as the field of graph mining [Aggarwal and
Wang 2010] – has emerged that focuses on gaining insights from graph data. Many interesting and
important problems have been studied in this area. These include graph classification [Duvenaud
et al. 2015], link prediction [Sun et al. 2011], community detection [Girvan and Newman 2002],
functional brain network discovery [Bai et al. 2017], node classification and clustering [Perozzi
et al. 2014], and influence maximization [He and Kempe 2014] – with new problems constantly
being proposed.
In the real-world, however, graphs can be both structurally large and complex [Ahmed et al.

2014; Leskovec and Faloutsos 2006] as well as noisy [He and Kempe 2014]. These pose a significant
challenge to graph mining techniques, particularly in terms of performance [Ahmed et al. 2017].

Various techniques have been proposed to address this issue. For instance, the method proposed
by [Wu et al. 2015] utilizes multiple views of the same graph to improve classification performance
while [Zhang et al. 2016] leverages auxiliary non-graph data as side views with the same moti-
vation. Another popular technique involves the identification of task-relevant or discriminative
subgraphs [Shi et al. 2012; Zhu et al. 2012].
The fields of neuroscience and artificial intelligence have a long history of interactions. Many

recent advances in artificial intelligence have been inspired by the study of the neural capabilities
of the brain in humans and other animals [Hassabis et al. 2017]. One key example is the recent work
in deep learning on attention. The key insight is that the brain does not learn by implementing a
global optimization principle in a uniform neural network. The brain is modular and is comprised
by distinct as well as interacting sub-modules performing key functions, such as language, memory,
etc. [Marblestone et al. 2016]. Attention is an important brain-inspired function that has been
utilized in many ways in recent deep learning methods allowing improvements in learning from
limited data.
Recently, new methods have emerged to address the challenges facing relational (graph) learn-

ing problems by incorporating attention to improve graph deep learning methods. An attention
mechanism aids a model by allowing it to "focus on the most relevant parts of the input to make
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decisions" [Velickovic et al. 2018]. Attention was first introduced in the deep learning community
to help models attend to important parts of the data [Bahdanau et al. 2015; Mnih et al. 2014]. The
mechanism has been successfully adopted by models solving a variety of tasks. Attention was used
by [Mnih et al. 2014] to take glimpses of relevant parts of an input image for image classification;
on the other hand, [Xu et al. 2015] used attention to focus on important parts of an image for
the image captioning task. Meanwhile [Bahdanau et al. 2015] utilized attention for the machine
translation task by assigning weights which reflected the importance of different words in the
input sentence when generating corresponding words in the output sentence. Finally, attention has
also been used for both the image [Yang et al. 2016] as well as the natural language [Kumar et al.
2016] question answering tasks. However, most of the work involving attention has been done in
the computer vision or natural language processing domains.
Applying attention to graph data comes with its own unique set of challenges. For instance,

when generating captions from an image in the image captioning task [Xu et al. 2015], an object
that may be particularly relevant could be situated in any part of the image. On the other hand, for
graph-based task the structure of the graph has to be carefully considered. For instance, for the
task of node classification on social networks [Kipf and Welling 2017] where the goal is to identify
the label of a node, we typically attend to a node’s neighborhood and ignore the nodes in the rest
of the graph [Velickovic et al. 2018]. Figure 1 shows a motivating example of when attention can
be useful in a graph setting.

There has been a growing interest in attention models for graphs recently and various techniques
have been proposed [Choi et al. 2017; Feng et al. 2016; Han et al. 2018; Lee et al. 2018; Ma et al.
2017; Velickovic et al. 2018]. Although attention is defined in slightly different ways in all these
papers, the competing approaches do share common ground in that attention is used to allow the
model to focus on task-relevant parts of the graph. We discuss and define, more precisely, the main
strategies used by these methods to apply attention to graphs in Section 3. In particular, the main
advantages of using attention on graphs can be summarized as follows:

(1) Attention allows the model to avoid or ignore noisy parts of the graph, thus improving the
signal-to-noise (SNR) ratio [Lee et al. 2018; Mnih et al. 2014].

(2) Attention allows the model to assign a relevance score to elements in the graph (for instance,
the different neighbors in a node’s neighborhood) to highlight elements with the most
task-relevant information, further improving SNR [Velickovic et al. 2018].

(3) Attention also provides a way for us to make a model’s results more interpretable [Choi et al.
2017; Velickovic et al. 2018]. For example, by analyzing a model’s attention over different
components in a medical ontology graph we can identify the main factors that contribute to
a particular medical condition [Choi et al. 2017].

In this paper, we conduct a comprehensive and focused review of the literature on graph at-
tention models. To the best of our knowledge, this is the first work on this topic. We introduce
three different taxonomies to group existing work into intuitive categories. We then motivate
our taxonomies through detailed examples and use each to survey competing approaches from
a particular standpoint. In particular, we group the existing work by the kind of attention that is
used, by the task (e.g., node classification, graph classification, etc.), and by the problem setting
(defined by the type of input graph and the primary problem output).

Our first taxonomy introduces the main strategies that have been proposed in the literature for
applying attention in graphs. Our second taxonomy groups methods by application area; this shows
the reader what problems have already been tackled while, perhaps more importantly, revealing
important graph-based problems where attention models have yet to be applied. In previous work,
different methods take different kinds of graphs (e.g., homogeneous graphs, heterogeneous graphs,
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Fig. 2. Proposed taxonomies to group graph attention models based on (a) type of attention used, (b) task or
problem, and (c) problem setting.

directed acyclic graphs, etc.) with different properties (e.g., attributed, weighted or unweighted,
directed or undirected) as input. These methods also differ by their outputs (e.g., node embedding,
link embedding, graph embedding). We use the third and final taxonomy, which is our main
taxonomy, to provide a comprehensive survey of the field from the perspective of problem setting.
We illustrate our proposed taxonomies in Figure 2.

We argue that these taxonomies allow readers to learn about different graph attention methods
from different perspectives. In general, the discussion pertaining to each of the taxonomies can be
considered separately. For instance, if the reader is interested in a particular problem, they may
refer to the second taxonomy (Fig. 2b) to see what other methods have been proposed for this
problem. If their problem domain requires them to work on a particular type of graph, they can
then focus on the third taxonomy (Fig. 2c) to see what other methods have been proposed that
match their problem setting. The first taxonomy (Fig. 2a) allows them to quickly identify the kind
of strategies that have been employed previously to implement attention.

We use Graph Attention Networks [Velickovic et al. 2018] as an example to show the connections
between the different taxonomies and also to highlight their individual focus. Graph Attention
Networks are a variant of Graph Convolutional Networks [Kipf and Welling 2017] with attention.
The method is given an attributed homogeneous graph (input) and it uses a series of “message
passing” steps to learn individual node embeddings (output) for each of the nodes in the graph.
Previously [Kipf and Welling 2017], at each step, a node’s new embedding is calculated by taking
a weighted sum of its neighbors’ embeddings – with the weights being fixed. The method in
[Velickovic et al. 2018] differs from previous work in that a general attention mechanism (type of
attention) is used to assign attention coefficients to neighbor embeddings. This defines a probability
distribution over the “messages” to be aggregated, allowing the model to prioritize more task-
relevant messages. The method was evaluated on node classification (task). A classification layer
took the final node embeddings as input and used these to predict each node’s label, this allowed
the model to be trained end-to-end.
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Additionally, we also summarize the challenges that have yet to be addressed in the area of graph
attention and provide promising directions for future work.

1.1 Main contributions
The main contributions of this work are as follows:

(1) We introduce three intuitive taxonomies for categorizing various graph attention models
and survey existing methods using these taxonomies. To the best of our knowledge, this is
the first survey on the important field of graph attention.

(2) We motivate each taxonomy by discussing and comparing different graph attention models
from the taxonomy’s perspective.

(3) We highlight the challenges that have yet to be addressed in the area of graph attention.
(4) We also provide suggestions on potential areas for future work in this emerging field.

1.2 Scope of this article
In this article, we focus on examining and categorizing various techniques that apply attention
to graphs (we give a general definition of attention in Sec. 2). Most of these methods take graphs
as input and solve some graph-based problem such as link prediction [Sun et al. 2011], graph
classification/regression [Duvenaud et al. 2015], or node classification [Kipf and Welling 2017].
However, we also consider methods that apply attention to graphs although the graph is only one
of several types of input to the problem.

We do not attempt to survey the vast field of general graph-based methods that do not explicitly
apply attention, multiple work have already been done on this with each having a particular
focus [Cai et al. 2018; Getoor and Diehl 2015; Jiang et al. 2013].

1.3 Organization of the survey
The rest of this survey is organized as follows. We start by introducing useful notations and
definitions in Section 2. In Section 3, we introduce the main strategies used to implement attention
in graphs (Fig. 2a). We then proceed to categorize existing work broadly by the type of task they
solve (Fig. 2b) in Section 4. Sections 5 through 7 cover discussion of related work using our main
taxonomy (Fig. 2c). We organized Sections 5-7 such that the methods in existing work are grouped
by the main type of embedding they calculate (e.g., node embedding, edge embedding, graph
embedding, or hybrid embedding); these methods are then further divided by the type of graphs
they support. In Section 8, we discuss challenges as well as interesting opportunities for future
work. Finally, we conclude the survey in Section 9.

2 PROBLEM FORMULATION
In this section, we define the different types of graphs that appear in the discussion; we also
introduce related notations.

Definition 1 (Homogeneous graph). Let G = (V ,E) be a graph where V is the set of nodes
(vertices) and E is the set of edges between the nodes in V .

Further, let A =
[
Ai j

]
be the n × n, for n = |V |, adjacency matrix of G where Ai j = 1 if there

exists (vi ,vj ) ∈ E and Ai j = 0 otherwise. When A is a binary matrix (i.e., Ai j ∈ {0, 1}), we consider
the graph to be unweighted. Note that A may also encode edge weights; given a weight w ∈ R
for (vi ,vj ) ∈ E, Ai j = w . In this case, the graph is said to be weighted. Also, if Ai j = Aji , for any
1 ≤ i, j ≤ n, then the graph is undirected, otherwise it is directed.

Given an adjacency matrix A, we can construct a right stochastic matrix T – also called the
transition matrix – which is simply A with rows normalized to 1. Also, given a vertex v ∈ V , let Γv
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Table 1. Summary of notation. Matrices are bold upright roman letters; vectors are bold lowercase letters.

G (un)directed (attributed) graph
A adjacency matrix of the graph G = (V , E)
T stochastic transition matrix for G constructed by normalizing over the rows in A

n,m number of nodes and edges in the graph
k number of embedding dimensions
d node attribute dimension
Γi neighbors of i defined using some neighborhood

Γ
(ℓ)
i ℓ-neighborhood Γ

(ℓ)
i = {j ∈ V | dist(i, j) ≤ ℓ }

dist(i, j) shortest distance between i and j
X n × d input attribute matrix
x a d-dimensional feature vector
xi the i-th element of x
Z output node embedding matrix (or vector z in the case of graph embeddings)

be the set of vertices in node v’s neighborhood (for instance, a popular definition for neighborhood
is simply the one-hop neighborhood of v , or Γv = {w |(v,w) ∈ E}).

Definition 2 (Heterogeneous graph). A heterogeneous graph is defined asG = (V ,E) consisting
of a set of node objects V and a set of edges E connecting the nodes in V . A heterogeneous graph also
has a node type mapping function θ : V → TV and an edge type mapping function defined as
ξ : E → TE where TV and TE denote the set of node types and edge types, respectively. The type of node
i is denoted as θ (i) (which may be an author, a paper, or a conference in a heterogeneous bibliographic
network) whereas the type of edge e = (i, j) ∈ E is denoted as ξ (i, j) = ξ (e) (e.g., a co-authorship
relationship, or a “published in” relationship).

Note a heterogeneous graph is sometimes referred to as a typed network. Furthermore, a bipartite
graph is a simple heterogeneous graph with two node types and a single edge type. A homogeneous
graph is simply a special case of a heterogeneous graph where |TV | = |TE | = 1.

Definition 3 (Attributed graph). LetG = (V ,E,X) be an attributed graph where V is a set of
nodes, E is a set of edges, and X is an n × d matrix of node input attributes where each x̄i (or Xi :) is
a d-dimensional (row) vector of attribute values for node vi ∈ V and xj (or X:j ) is an n-dimensional
vector corresponding to the jth attribute (column) of X. Additionally, we may also have anm × d ′

matrix X′ of edge input attributes. These may be real-valued or not.

Definition 4 (Multi-view graph). G = (V , {A1, · · · ,Ac }) denotes a multi-view graph with
c views. An n × n adjacency matrix Ai captures the relationship between different nodes from the
perspective of the i-th view.

Definition 5 (Directed acyclic graph (DAG)). A directed graph with no cycles.

The different “classes” of graphs defined in Definitions 1-3 can be directed or undirected as
well as weighted or unweighted. Other classes of graphs arise from composing the distinct “graph
classes” (Definition 1-3). For instance, it is straightforward to define an attributed heterogeneous
network G = (V ,E,TV ,TE ,X).

Definition 6 (Path). A path P of length L is defined as a sequence of unique indices i1, i2, . . . , iL+1
such that (vit ,vit+1 ) ∈ E for all 1 ≤ t ≤ L. The length of a path is defined as the number of edges it
contains.
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Unlike walks that allow loops, paths do not and therefore a walk is a path iff it has no loops (all
nodes are unique). Note that a path is a special kind of graph with a very rigid structure where all
the nodes have at most 2 neighbors. We now give a general, yet formal, definition of the notion of
graph attention as follows:

Definition 7 (Graph Attention). Given a target graph object (e.g., node, edge, graph, etc),v0 and
a set of graph objects in v0’s “neighborhood” {v1, · · · ,v |Γv0 |} ∈ Γv0 (the neighborhood is task-specific
and can mean the ℓ-hop neighborhood of a node or something more general). Attention is defined as a
function f ′ : {v0} × Γv0 → [0, 1] that maps each of the object in Γv0 to a relevance score which tells us
how much attention we want to give to a particular neighbor object. Furthermore, it is usually expected
that

∑ |Γv0 |
i=1 f ′(v0,vi ) = 1.

A summary of the notation used throughout the manuscript is provided in Table 1.

3 TYPES OF GRAPH ATTENTION MECHANISM
In this section, we describe the three main types of attention that have been applied to graph data.
While all three types of attention share the same purpose or intent, they differ in how attention is
defined or implemented. In this section, we provide examples from the literature to illustrate how
each type is implemented, in general.
Similarity-based attention which was proposed earlier in the NLP domain in works such as

[Bahdanau et al. 2015; Graves et al. 2014] makes the assumption that “the most relevant keys are the
most similar to the query” [Galassi et al. 2019]. As an example, in our context, when a model decides
to attend to a node v∗’s neighborhood using similarity-based attention, it will prioritize nodes that
have similar representations as v∗. In practice, similarity can be based on a similarity function like
cosine similarity or more loosely calculated using a dot product or even vector subtraction.

On the other hand, general attention generalizes the idea of attention and doesn’t explicitly require
similarity [Luong et al. 2015]. For instance, Graph Attention Networks or GAT [Velickovic et al.
2018] uses this type of attention to identify v∗’s neighbors that hold task-relevant or discriminative
information even if they do not share similar features/embeddings with v∗. This type of attention
is suitable for scenarios where we don’t equate similarity to relevance.

Various methods have used walks on graphs to sample from graphs [Grover and Leskovec 2016;
Perozzi et al. 2014; Vishwanathan et al. 2010]. Methods based on attention-guided walks rely on an
attention mechanism to bias the walk on a graph. This can be for different reasons, for instance
[Abu-El-Haija et al. 2018] uses attention to bias the walk sampling process which in turn has an
effect on the learned node embeddings. On the other hand, [Lee et al. 2018] uses an attention-guided
walk to learn walk-based subgraph embeddings. The reader can refer to [Galassi et al. 2019] for an
in-depth discussion on how attention coefficients are calculated by methods in the NLP domain.
In the discussion below, we now give some examples of how the three types of attention are

implemented in practice. Recall from our general definition of attention in Def. 7 that we are given a
target graph object (e.g., node, edge, graph, etc) v0 and a set of graph objects in v0’s “neighborhood”
{v1, · · · ,v |Γv0 |} ∈ Γv0 . Attention is defined as a function f ′ : {v0} × Γv0 → [0, 1] that maps each of
the objects in Γv0 to a relevance score.

3.1 General attention
Given the corresponding attributes/features x0, x1, · · · , x |Γo∗ | forv0,v1, · · · ,v |Γv0 | , attention weights
can be learned via:

α0, j =
e0, j∑

k ∈Γv0
e0,k
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Fig. 3. (a) Given a target objectv0, we assign importance weights α0,i to the objects i in our neighborhood. This
can be done by learning a function that assigns importance by examining (possibly) the hidden embeddings
of v0 and vi , x0 and xi . (b) The hidden embedding h3 represents information (x1, · · · , x3) we’ve integrated
after a walk of length L = 3, we input this into a ranking function that determines the importance of various
neighbor nodes and this is used to bias the next step. For both examples, we use w to represent the trainable
parameters of the attention function.

where e0, j is nodevj ’s relevance tov0. In practice, this is typically implemented using softmax with a
trainable function learning vj ’s relevance to v0 by considering their attributes. The implementation
in GAT [Velickovic et al. 2018] illustrates this:

α0, j =
exp

(
LeakyReLU

(
a[Wx0 | |Wxj ]

))
∑

k ∈Γv0
exp

(
LeakyReLU

(
a[Wx0 | |Wxk ]

))
where a is a trainable attention vector,W is a trainable weight matrix mapping the input features
to the hidden space, and | | represents concatenation. An illustration of this is shown in Fig. 3a.

3.2 Similarity-based attention
Again, given the corresponding attributes or features, the second type of attention can be learned
similarly as above except for a key difference. We call this approach similarity-based attention as
more attention is given to object’s that share more similar hidden representations or features, this
is also often referred to in the literature as alignment [Bahdanau et al. 2015]. To illustrate this, we
use the definition given in AGNN [Thekumparampil et al. 2018]:

α0, j =
exp

(
β · cos

(
Wx0,Wxj

))
∑

k ∈Γv0
exp

(
β · cos

(
Wx0,Wxk

))
where β is a trainable bias and “cos” represents cosine-similarity; like before,W is a trainable weight
matrix to map inputs to the hidden space. Note that this is very similar to the above definition.
The difference is that the model explicitly learns similar hidden embeddings for objects that are
relevant to each other since attention is based on similarity or alignment.

3.3 Attention-guided walk
While the first two types of attention focuses on choosing relevant information to integrate into a
target object’s hidden representation, the third type of attention has a slightly different purpose.
We use GAM [Lee et al. 2018] to illustrate this idea. GAM takes a series of steps on an input graph
and encodes information from visited nodes using an RNN to construct a subgraph embedding. The
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RNN’s hidden state at a time t , ht ∈ Rh encodes information from the nodes that were previously
visited by the walk from steps 1, · · · , t . Attention is then defined as a function f ′ : Rh → Rk that
maps an input hidden vector f ′(ht ) = rt+1 to a k-dimensional rank vector that tells us which of the
k types of nodes we should prioritize for our next step. The model will then prioritize neighboring
nodes of a particular type for the next step. We illustrate this in Fig. 3b.

4 GRAPH TASKS
In general, graph-based methods can be broadly split into two groups by the kind of problem
they tackle: node-level or graph-level. When mining richly structured datasets where links (or
relationships) exist between different nodes (or objects), with node-level tasks we are typically
interested in answering questions pertaining to a node (or a group of nodes). When performing
node classification [Lu and Getoor 2003], for instance, we might ask “what does the structure of a
node’s neighborhood and its neighbors’ information tell me about the node’s label?”
When the task is at the graph-level, on the other hand, each object in the dataset is typically

represented by a graph and we are now interested in answering questions pertaining to entire
graphs. For instance, given a set of molecular graphs we might be interested in knowing what the
structure of a molecule can tell us about its solubility or toxicity (graph classification/regression
[Duvenaud et al. 2015]).
The different graph-based methods we survey in this paper solve a variety of graph problems

by framing them as machine learning tasks. To solve the task at hand using a machine learning
algorithm, we need to represent pertinent objects (e.g., nodes, edges, subgraphs, or even entire
graphs) as vectors. In Sec. 5-7, we discuss in more detail how these attention-based embeddings or
vector representations can be learned using various approaches.

4.1 Node-level
Several attention-based methods have been proposed recently for the popular tasks of node classifi-
cation and link prediction [Abu-El-Haija et al. 2018; Feng et al. 2016; Qu et al. 2017; Thekumparampil
et al. 2018; Velickovic et al. 2018; Wang et al. 2018; Zhao et al. 2017; Zhou et al. 2019]. Although the
methods differ from one another in the approach they take and the assumptions they make, they
all share a common strategy. This entails the use of an attention mechanism to help learn node
and/or edge embeddings which are then fed as input to a model for the task at hand (i.e., node
classification or link prediction).

Methods such as AttentionWalk [Abu-El-Haija et al. 2018] and GAKE [Feng et al. 2016] first
learn node embeddings in an unsupervised manner. The learned node embeddings are then used
as input for the downstream tasks of node classification and link prediction. Attention is used in
[Abu-El-Haija et al. 2018] to allow the model to select an ideal “context distribution” which has an
effect on the learned embeddings. On the other hand, GAKE uses attention to highlight objects in a
node’s “context neighborhood” which have more representative power which again has an effect
on the node’s learned embedding.

GAT [Velickovic et al. 2018] and AGNN [Thekumparampil et al. 2018] are variants of the popular
graph convolutional network (GCN) introduced by [Kipf and Welling 2017]. These methods incor-
porate an attention mechanism to the “message-passing” step in a GCN to help them identify more
task-relevant messages for each node. Unlike the previous methods, these models are end-to-end
trainable.

On the other hand, [Qu et al. 2017] and [Wang et al. 2018] study node classification and/or link
prediction in the context of multi-view graphs while [Zhou et al. 2019] considers a heterogeneous
graph. When learning node embeddings in a multi-view graph, the different views of the graph
have to be considered and attention is used to highlight the informative views for each node. This is
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the strategy employed by both [Qu et al. 2017] and [Wang et al. 2018]. In a heterogeneous graph, on
the other hand, different meta-paths can exist between a pair of nodes with each type of meta-path
representing a distinct relationship between the nodes. HAHE [Zhou et al. 2019] used an attention
mechanism to highlight more task-relevant meta-paths when learning node embeddings for node
classification.
Apart from node classification and link prediction, an attention-based method has also been

proposed for the task of top-K item recommendation on heterogeneous networks [Hu et al. 2018]
which we can view as a kind of node ranking [Sun et al. 2009a]. Finally,MEgo2Vec [Zhang et al.
2018] is a method that tackles the problem of user or node alignment on social networks.

4.2 Graph-level
Multiple works have also studied graph-level tasks such as graph classification and graph regression.
In this setting, an attention mechanism which helps the model to attend to more task-relevant parts
of a graph is used to learn a graph embedding. Methods like EAGCN [Ryu et al. 2018],Modified-
GAT [Shang et al. 2018], GAM [Lee et al. 2018], and Dipole [Ma et al. 2017] learn attention-guided
graph embeddings for the more standard tasks of graph classification and regression. It is not hard
to see how these can be applied to the related problem of graph similarity search [Zheng et al.
2013].
On the other hand, various work [Bahdanau et al. 2015; Luong et al. 2015; Xu et al. 2018; Zhou

et al. 2018] have also considered the problem of generating sequences from input graph data.
Most notably, in contrast to simpler sequence-to-sequence models, graph2seq [Xu et al. 2018] is
a method that can output a sequence given a general graph. This can be applied to tasks where
we are given a graph capturing various relationships between different entities and are asked to
answer a text query by reasoning using the provided information.
Finally, GRAM [Choi et al. 2017] applied attention to a medical ontology graph to help learn

attention-based embeddings for medical codes. While the problem they studied was the problem of
classifying a patient record (described by certain medical codes), the novelty of their work was in
applying attention on the ontology graph to improve model performance.

5 ATTENTION-BASED NODE/EDGE EMBEDDING
In this section – as well as the two succeeding ones – we introduce various graph attention models
and categorize them by problem setting. To maintain uniformity across the sections (Sec. 5 - Sec. 7),
we group the methods by the type of graphs they take as input. The first subsection covers the
most common type of graphs (homogeneous graphs). The second subsection covers heterogeneous
networks or graphs which have received a lot of attention recently in graph mining [Dong et al.
2017; Hu et al. 2018; Liu et al. 2018c; Shi et al. 2017; Zhou et al. 2019]. Finally, we use the last
subsection to discuss methods that work on all other special types of graphs (e.g., directed acyclic
graphs, multi-view graphs, paths).

For easy reference, we show all of the surveyed methods in Table 2, taking care to highlight where
they belong under each of the proposed taxonomies. We now begin by defining the traditional
node embedding problem.

Definition 8 (Node Embedding). Given a graphG = (V ,E) with V as the node set and E as the
edge set, the objective of node embedding is to learn a function f : V → Rk such that each node i ∈ V
is mapped to a k-dimensional vector zi where k ≪ |V |. The node embedding matrix is denoted as Z.

The learned node embeddings given as output can subsequently be used as input to mining and
machine learning algorithms for a variety of tasks such as link prediction [Sun et al. 2011], node
classification [Velickovic et al. 2018], community detection [Girvan and Newman 2002], and role
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Table 2. Qualitative and quantitative comparison of graph-based attention models.
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AttentionWalks [Abu-El-Haija et al. 2018] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

GAKE [Feng et al. 2016] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

GAT [Velickovic et al. 2018] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

AGNN [Thekumparampil et al. 2018] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PRML [Zhao et al. 2017] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

HAHE [Zhou et al. 2019] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MVE [Qu et al. 2017] ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

I2MNE [Wang et al. 2018] ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

JointD/E + SATT [Han et al. 2018] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

MCRec [Hu et al. 2018] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

SPE [Liu et al. 2018c] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

MEgo2Vec [Zhang et al. 2018] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Modified − GAT [Ryu et al. 2018] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

GAM [Lee et al. 2018] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

EAGCN [Shang et al. 2018] ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Dipole [Ma et al. 2017] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

CCM [Zhou et al. 2018] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

RNNSearch [Bahdanau et al. 2015] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Att − NMT [Luong et al. 2015] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

graph2seq [Xu et al. 2018] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

GRAM [Choi et al. 2017] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

discovery [Rossi and Ahmed 2015]. We now define the problem of attention-based node embedding
as follows:

Definition 9 (Attention-based Node Embedding). Given a graph G = (V ,E) with V as the
node set and E as the edge set, attention-based node embedding learns a function f ′ which defines a
probability distribution over the elements in a target node i’s neighborhood, and a function f : V → Rk
which maps each node i ∈ V to an embedding vector zi . The function f utilizes f ′ to determine which
elements in a node’s neighborhood to attend to or prioritize when calculating the node’s embedding.

Above, we defined attention-based node embedding; note that attention-based edge embedding
can also be defined similarly. Here, we use a single section to discuss both node and edge embeddings
since there has not been a lot of work on attention-based edge embeddings and also because the
two problems are quite similar [Cai et al. 2018]. We now categorize the different methods that
calculate attention-based node/edge embeddings based on the type of graph they support.

ACM Trans. Knowl. Discov. Data., Vol. 0, No. 0, Article 00. Publication date: August 2019.



00:12 Lee, J. et al

5.1 Homogeneous graphs
Most work that calculate attention-based node embeddings focus on homogeneous graphs [Abu-El-
Haija et al. 2018; Thekumparampil et al. 2018; Velickovic et al. 2018; Zhang et al. 2018; Zhao et al.
2017]. Also, all the methods assume the graph is attributed although [Abu-El-Haija et al. 2018] only
needs node labels (in this case, the attribute size d = 1).

The order of the discussion here is as follows. We start by introducing methods that are more sim-
ilar to traditional unsupervised node representation learning approaches (e.g., DeepWalk, node2vec)
[Abu-El-Haija et al. 2018; Feng et al. 2016]. We then introduce methods that extend graph convolu-
tional networks by adding attention [Thekumparampil et al. 2018; Velickovic et al. 2018]. Finally,
we introduce other approaches for learning attention-based node embeddings [Zhang et al. 2018;
Zhao et al. 2017].

The method proposed by [Abu-El-Haija et al. 2018], calledAttentionWalks, is most reminiscent
of popular node embedding approaches such as DeepWalk and node2vec [Grover and Leskovec
2016; Perozzi et al. 2014] in that a random walk is used to calculate node contexts. Given a graph
G with its corresponding transition matrix T, and a context window size c , we can calculate the
expected number of times walks started at each node visits other nodes via:

E[D|a1, · · · ,ac ] = In
c∑
i=1

ai (T)i .

Here In is the size-n identity matrix, ai , for 1 ≤ i ≤ c , are learnable attention weights, and D is the
walk distribution matrix where Duv encodes the number of times node u is expected to visit node v
given that a walk is started from each node. In this scenario, attention is thus used to steer the walk
towards a broader neighborhood or to restrict it within a narrower neighborhood (e.g., when the
weights are top-heavy). This solves the problem of having to do a grid-search to identify the best
hyper-parameter c as studies have shown that this has a noticeable impact on performance [Perozzi
et al. 2014] – note that for DeepWalk the weights are fixed at ai = 1 − i−1

c .
Another attention-basedmethod that is very similar in spirit to methods like DeepWalk, node2vec,

and LINE [Grover and Leskovec 2016; Perozzi et al. 2014; Tang et al. 2015] in that it uses co-
occurrence information to learn node embeddings is GAKE [Feng et al. 2016]. It is important to
point out that GAKE builds a graph, commonly referred to as a knowledge graph, from knowledge
triplets (h, t , r ) where h and t are terms connected by a relationship r . Given three triplets (Jose,
Tagalog, speaks), (Sato, Nihongo, speaks), and (Jose, Sinigang, eats) we can construct a simple
heterogeneous graph with three types of nodes, namely {person, language, food}, and two types
of relationships, namely {speaks, eats}. However we categorize GAKE as a homogeneous graph
method as it doesn’t seem to make a distinction between different kinds of relationships or node
types (see metapath2vec [Dong et al. 2017] for a node embedding method that explicitly models
the different kinds of relationships and nodes in a heterogeneous graph). Instead, the method takes
a set of knowledge triplets and builds a directed graph by taking each triplet (h, t , r ) and adding h
and t as the head and tail nodes, respectively, while adding an edge from the head to the tail (they
also add a reverse link).
The main difference between GAKE and methods such as DeepWalk, node2vec, and even At-

tentionWalks is that they include edges to define a node’s context. Note that AttentionWalks
follows previous approach [Perozzi et al. 2014] and define a node’s context by other nodes within
a context window. They define three different contexts to get related subjects (nodes or edges),
formally they maximize the log-likelihood:∑

s ∈V∪E

∑
c ∈Γs

loд Pr(s | c)
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where Γs is a set of nodes and/or edges defining the neighborhood context of s . To get the final
node embedding for a given subject s in the graph, they use attention to obtain the final embedding
zs =

∑
c ∈Γ′s α(c) z′c where Γ′s is some neighborhood context for s , α(c) defines the attention weights

for context object c and z′c is the learned embedding for c .
On the other hand, methods like GAT [Velickovic et al. 2018] and AGNN [Thekumparampil et al.

2018] extend graph convolutional networks [Kipf and Welling 2017] by incorporating an explicit
attention mechanism. Recall that a GCN is able to propagate information via an input graph’s
structure using the propagation rule:

H(l+1) = σ (D̃− 1
2 ÃD̃− 1

2 H(l )W(l ))

where H(l ) indicates the learned embedding matrix at layer l of the GCN with H(0) = X. Also,
Ã = A + In is the adjacency matrix of an undirected graph A with added self loop. The matrix D̃,
on the other hand, is defined as the diagonal degree matrix of Ã so, in other words, D̃i,i =

∑
j Ãi, j .

Hence, the term D̃− 1
2 ÃD̃− 1

2 computes a symmetric normalization (similar to the normalized graph
Laplacian) for the graph defined by Ã. Finally,W(l ) is the trainable weight-matrix for level l and
σ (·) is a nonlinearity like ReLU, Sigmoid, or tanh.

A GCNworks like an end-to-end differentiable version of theWeisfeiler-Lehman algorithm [Sher-
vashidze et al. 2011] where each additional layer allows us to expand and integrate information
from a larger neighborhood. However, because we use the term D̃− 1

2 ÃD̃− 1
2 H in the propagation, we

are essentially applying a weighted sum of the features of neighboring nodes normalized by their
degrees. GAT and AGNN essentially introduce attention weights auv to determine how much at-
tention we want to give to a neighboring node v from node u’s perspective. The two methods differ
primarily in the way attention is defined (we expound on this in Sec. 3). Furthermore, [Velickovic
et al. 2018] introduce the concept of “multi-attention” which basically defines multiple attention
heads (e.g., weights) between a pair of objects in the graph.
PRML [Zhao et al. 2017] is another approach that learns edge embeddings but they use a

different strategy to define attention. In [Zhao et al. 2017], a path-length threshold L is defined
and a recurrent neural network [Gers et al. 2000] learns a path-based embedding for paths of
length 1, · · · ,L between pairs of nodes u and v . Attention is defined in two ways. First, attention
is used to identify important nodes along paths and this helps in calculating the intermediary
path embeddings. Second, attention then assigns priority to paths that are more indicative of link
formation and this is used to highlight important or task-relevant path embeddings when these are
integrated to form the final edge embedding. We can think of this approach as an attention-based
model that calculates the Katz betweenness score for pairs of nodes [Liben-Nowell and Kleinberg
2003].
MEgo2Vec is an attention-based method which solves the problem of user alignment across

two social networks [Zhang et al. 2018]. To determine whether a user vi (from the first network)
and a user ui (from the second network) refer to the same individual (for notational convenience,
we use the same subscript i for the pair of nodes), the method first extracts two ego networks
corresponding to vi and ui , respectively. An ego network is a vertex-induced subgraph consisting
of a focal node v∗ (in this case, vi or ui ) and all nodes directly connected to v∗. A single matched
ego network is then constructed by grouping the focal users into a pair (vi ,ui ) and matching their
neighbors into pairs (vj ,uj ) – based on whether the corresponding neighbors are likely to be the
same individual. Note that each user pair is represented by a single node in the matched network.
An edge is drawn between two user pairs (vj ,uj ) and (vk ,uk ) if both vj and vk as well as uj and uk
were connected in their respective ego networks. A node embedding is then learned for the focal
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pair (vi ,ui ) by calculating the following embeddings:

ṽi = σ (
∑
j ∈NM

i

α jivj ), ũi = σ (
∑
j ∈NM

i

α jiuj ).

Here, σ is a non-linearity, NM
i is the set of indices referring to the focal node’s neighbor pairs in

the matched network, vj is the initial node embedding of a node vj from the first network, uj is
the initial node embedding of a node uj from the second network, and α ji is the attention weight
determining the importance of a neighbor pair (vj ,uj ). The attention weights are calculated to
prioritize (1) rarer and thus more discriminative neighbor pairs, (2) neighbor pairs that are more
similar as these are more likely to be the same individual, and (3) neighbor pairs that have the same
semantic relationship with the focal pair across social networks. The final embedding of the focal
pair (vi ,ui ) is simply |ṽi − ũi |.

5.2 Heterogeneous graph
The only work, to the best of our knowledge, that has been proposed to calculate attention-guided
node embeddings for heterogeneous graphs isHAHE [Zhou et al. 2019]. To learn a node embedding,
the method first selects P meta-paths and uses each path p to create a distinct view of the data
characterized by the adjacency matrixA(p).A(p)

i j is simply the count of meta-paths of type p between
nodes i and j. The reason why we do not consider this to be a method for multi-view graph is
because an arbitrary number of meta-paths P can be selected to form a multi-view graph with P
views from a given heterogeneous graph.

P separate node embeddings are then learned for each node with respect to the P views. For each
view p, a neighborhood aggregation scheme with attention is used to learn a node’s embedding.
This technique is almost identical to the ones proposed by GAT and AGNN and is used to prioritize
more relevant neighborhood features. More specifically, a node i’s p-th view-specific embedding is
calculated via:

h(p)i = σ (
∑

j ∈N(p)
i

α
(p)
i j W

(p)x(p)j ),

where σ is a non-linearity, N(p)
i is node i’s neighbors in view p,W(p) is a trainable weight matrix,

x(p)j is node j’s feature vector, and α (p)
i j is a trainable attention weight. A second attention mechanism

is then utilized to assign weights to each of the P view-specific embeddings for a node so they can
be aggregated into one final node embedding.

5.3 Other special cases
Multi-view graphs are graphs which are comprised of multiple edge sets which are defined over the
same set of nodes [Qu et al. 2017; Wang et al. 2018]. Each view (represented by a distinct edge set)
in the graph captures interactions between entities from a particular point of view. For instance,
when studying brain networks, a multi-view graph with two complementary views can be used to
represent the structural (view one) and functional (view two) connections between brain regions
[Liu et al. 2018a].
MVE is a method for learning node embeddings on multi-view graphs [Qu et al. 2017]. Here,

an attention mechanism is used to identify the informative views for each node. The embeddings
from more informative views are then given more weight when calculating each node’s final
node embedding. In essence, the attention mechanism used by MVE is quite similar to the second
attention mechanism of HAHE.
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I2MNE [Wang et al. 2018] is another attention-based method for learning node embeddings on
multi-view graphs. Like MVE, the proposed method also uses attention to select more informative
or task-relevant views from which to learn the final node embeddings. However, while learning
view-specific node embeddings the method utilizes a second attention mechanism to identify
intra-view neighbors whose features are more relevant to a particular node. This is similar to the
self-attention proposed in GAT [Velickovic et al. 2018] and also used by HAHE [Zhou et al. 2019].
In fact, minus the preprocessing step in HAHE to convert a heterogeneous graph to a multi-view
graph, the two methods (HAHE and I2MNE) are very similar.

6 ATTENTION-BASED GRAPH EMBEDDING
Similarly, we begin the discussion by defining the traditional graph embedding problem.

Definition 10 (Graph Embedding). Given a set of graphs, the objective of graph embedding is
to learn a function f : G → Rk that maps an input graph G ∈ G to a low dimensional embedding
vector z of length k ; here G is the input space of graphs. Typically, we want to learn embeddings that
group similar graphs (e.g., graphs belonging to the same class) together.

The learned graph embeddings can then be fed as input to machine learning/data mining algo-
rithms to solve a variety of graph-level tasks such as graph classification [Lee et al. 2018], graph
regression [Duvenaud et al. 2015], and graph-to-sequence generation [Xu et al. 2018]. We now
define the problem of attention-based graph embedding as follows:

Definition 11 (Attention-based Graph Embedding). Given the same inputs as above, we learn
a function f : G → Rk that maps each input graph G ∈ G to an embedding vector z of length k .
Additionally, we learn a second function f ′ that assigns “attention weights” to different objects (e.g.,
nodes, edges, or subgraphs) in a given graph to allow the model to prioritize more task-relevant parts
of the graph when calculating its embedding.

6.1 Homogeneous graphs
Several methods have been proposed for learning graph embeddings on homogeneous graphs [Lee
et al. 2018; Ryu et al. 2018; Xu et al. 2018].
[Ryu et al. 2018] simply use the formulation of GAT [Velickovic et al. 2018] and make a few

adjustments to the way attention is calculated. However, aside from the change in how attention
weights are calculated, there isn’t much difference between GAT and the method proposed in [Ryu
et al. 2018]. To obtain the final graph embedding for the task of graph regression on molecular
graphs, the proposed method adds fully connected layers after the final GAT layer to flatten the
per-node outputs.
On the other hand, [Xu et al. 2018] propose graph2seq which solves the natural language

question answering task. Given a set of facts (in the form of sentences) their approach is quite
unique in that they convert the input into an attributed directed homogeneous graph. To obtain
a “static” graph embedding that is used for the sequence generation task, they first learn node
embeddings for each node in the graph. Node embeddings are formed by concatenating forward
and backward representations for each node. These representations are derived by aggregating
information from each node’s forward (neighbors traversed using forward links) and backward
(similarly, neighbors traversed using reverse links) neighborhoods, respectively. The static graph
embedding is obtained by pooling the individual node embeddings or by simply aggregating them.

Attention, in the case of graph2seq however, is applied by also attending to the individual node
embeddings during sequence generation. Since each node embedding zi captures information in
the region around node i (we can think of this as a neighborhood focused around i), attention
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allows us to prioritize a particular part of the graph when generating each word in the output
sentence (sequence). We can view this as a second “dynamic” time-dependent graph embedding
which captures the intuition that different parts of the graph can be associated, primarily, with
different concepts or words.

Finally, in a previous work [Lee et al. 2018], we proposed GAM which uses two types of attention
to learn a graph embedding. The main idea is to use an attention-guided walk to sample relevant
parts of the graph to form a subgraph embedding. In GAM, we took a walk of length L. Let 1 ≤ i ≤ L
be the i-th node discovered in the walk and xi the corresponding node attribute vector, an RNN is
used to integrate the node attributes (x1, · · · , xL) to form a subgraph embedding s (the subgraph or
region covered during the walk). During each step, an attention mechanism is used to determine
which neighboring node is more relevant to allow the walk to cover more task-relevant parts of the
graph. To get the final graph embedding, we deploy z “agents” to sample from various parts of the
graph yielding embeddings {s1, · · · , sz }. A second attention mechanism is then used to determine
the relevance of the various subgraph embeddings before these are combined to form a graph
embedding. In other words an attention mechanism is defined as a function α : Rk → [0, 1] which
maps a given subgraph embedding to a relevance score. The graph embedding is thus defined as∑z

i=1 α(si ) si .

6.2 Heterogeneous graphs
[Liu et al. 2018c] studied the problem of semantic user search on heterogeneous graphs. The goal is
to predict the relevance (or proximity) of two users w.r.t. some desired semantic user relationship.
The traditional approaches only considered meta-paths between users to solve this problem which
[Liu et al. 2018c] considers to be insufficient for capturing the rich semantic relationship between
users. To solve this problem, [Liu et al. 2018c] proposed SPEwhich calculates “subgraph-augmented
path embeddings.”
They start by defining an “s-node” embedding which contrary to what its name implies is an

aggregate subgraph embedding. An s-node is defined by a pair of user nodes (i , j) and captures the
subgraphs between users i and j. For instance, for a given user pair (i , j) with L different subgraph
patterns between them, the s-node embedding is defined as yi j =

∑L
l=1 αlxl . Here, αl is a trainable

attention weight, and xl is the initial subgraph embedding for subgraph l .
A subgraph-augmented path embedding can then be learned for two users u and v by forming a

path comprised of s-nodes from u to v . In particular, a path with n s-nodes can be formed with the
following user pairs (u, s1), (s1, s2), (s2, s3), · · · , (sn ,v). A series of s-node embeddings for a path is
fed as input into an RNN to learn a subgraph-augmented path embedding. This time attention is
applied to differentiate between the contributions of different s-nodes along the path. In particular,
the path embedding for a path between u and v with n s-nodes is defined as zuv =

∑n
i=1 α

′
ihi

where α ′
i is a trainable attention weight and hi is the i-th hidden vector of the RNN. Finally, to

calculate proximity between users u and v , multiple path embeddings corresponding to different
subgraph-augmented paths between users u and v are considered.
MCRec [Hu et al. 2018] is a method which studies the problem of item recommendation for

users. Like SPE [Liu et al. 2018c], we are also interested in calculating the relevance/proximity
between two nodes in a heterogeneous network. However, in this case, it is between a user node
and an item node. MCRec employs a strategy that is similar to SPE by learning embeddings for
meta-paths between a user u and an item i and uses attention to highlight meta-paths that capture
semantically-important relationships between a user and an item. However, unlike [Liu et al. 2018c],
the paths are node subgraph-augmented paths but simply meta-paths. In particular,MCRec [Hu
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et al. 2018], SPE [Liu et al. 2018c], and PRML [Zhao et al. 2017] all examine the paths, in general,
between two nodes to for link prediction or recommendation/ranking.

6.3 Other special cases
Attention was originally studied in the Computer Vision and NLP domains and various RNN
models using attention on sequence-based tasks were proposed [Bahdanau et al. 2015; Luong et al.
2015]. Since sequences are technically no different from paths, we introduce some notable attention
models under this setting.
A sequence (e.g., a sentence) of length L can be represented as a directed attributed graph of

length L – the i-th attribute vector xi of node i is then a representation of the i-th component in
the sequence (a one-hot word embedding or a word2vec embedding, for instance). In the proposed
methods [Bahdanau et al. 2015; Luong et al. 2015; Ma et al. 2017], the node attribute vectors
{xi , · · · , xL} are fed one after the other into an RNN. Recall that in the simplest case, a recurrent
neural network calculates a hidden embedding hi for each input i via the rule

hi = σ (Whxi + Uhhi−1) + bh ,
whereWh andUh are trainable weight matrices for the input xi and the previous hidden embedding
hi−1, respectively; bh is a bias vector and h0 is usually initialized to the zero vector.

In this case, we can think of hi as node i’s node embedding which integrated information from
the sub-path encompassing nodes 1, · · · , i . Attention can then be applied on node embeddings to
generate an attention-guided graph embedding. In particular, the method proposed in [Bahdanau
et al. 2015] called RNNSearch defined the graph embedding as z =

∑L
i=1 αi hi where attention is

assigned to each hidden embedding hi depending on its relevance to the task.
When the length of the path L is large, however, attending over all the hidden embeddings as

in RNNSearch may not yield the best results. [Luong et al. 2015] proposed to use two attention
mechanisms, the first is similar in spirit to that of [Bahdanau et al. 2015]. However, the second
attention allows the model to select a local point within the input and focus attention there.
More concretely, depending on the needs of the task, the second attention mechanism outputs a
position 1 ≤ p ≤ L and the graph embedding is constructed from the hidden node embeddings
hp−D , · · · , hp+D where D is an empirically selected attention window size.
Finally, Dipole [Ma et al. 2017] applied an attention model similar to that of [Bahdanau et al.

2015] to sequential medical data. They used it to diagnose or predict medical conditions from the
sequence. In practice, both [Ma et al. 2017] and [Bahdanau et al. 2015] used a bi-directional model
which processes an input sequence using two RNNs, one taking the input sequence in its original
order and another which takes the input sequence in reverse order.

EAGCN [Shang et al. 2018] was used to study the task of graph regression on molecular graphs.
The method represents a molecule as a multi-view graph where each view characterizes the
relationship between atoms w.r.t. a particular chemical bond property. The method then uses a
technique similar to the attention-based neighbor aggregation scheme used in [Wang et al. 2018;
Zhou et al. 2019] to learn multiple node embeddings (from the different views) for each node. The
final graph embedding is then a concatenation/sum of the attention-guided node embeddings. Apart
from its similarity to the multi-view graph methods mentioned above, EAGCN is like a version of
Modified - GAT that operates on multi-view graphs.

7 ATTENTION-BASED HYBRID EMBEDDING
In this section we discuss methods that apply attention on graph data. However, the calculated
embeddings are “hybrid” since the methods here also take data of other modalities (e.g., text) and
the learned embedding is a combination of all inputs.
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7.1 Homogeneous graphs
CCM [Zhou et al. 2018] tackles the problem of generating a response to an input statement. However,
what sets CCM apart from other text-based sequence-to-sequence methods is that the model takes
homogeneous graphs as additional inputs. The graphs are used to encode knowledge about the
world and, by considering them, the model is able to generate responses that are “knowledge-aware.”
Each graph i is defined by a set of knowledge tripletsTi = {(h(i)1 , t

(i)
1 , r

(i)
1 ), · · · , (h(i)ni , t

(i)
ni , r

(i)
ni )}, where

h(i)j and t (i)j are nodes and r (i)j denotes a directed edge from h(i)j to t (i)j .
When the model is given an input statement, it first retrieves a set of graphs related to the words

in the input statement. For each of these graphs i , it learns a graph embedding zi as follows:

zi =
|Ti |∑
j=1

α (i)
j [h(i)j ; t(i)j ]

where h(i)j and t(i)j are the embedding or attribute vectors of nodes h(i)j and t (i)j , respectively, and
α (i)
j is an attention coefficient calculated by taking into account the pair of nodes as well as the

relationship between them.
Finally, at each step of the response generation process, it uses attention to focus on important

graph embeddings zi . Furthermore, Themodel uses attention to identify the important pairs of nodes
(or triplets) within each graph. Like GAKE, we consider CCM to be a homogeneous graph method
since it doesn’t make an explicit distinction between different types of nodes and relationships.

JointD/E + SATT [Han et al. 2018] is another work that applies attention on graphs constructed
from knowledge triplets, similar to [Feng et al. 2016; Zhou et al. 2018]. However, they also use a large
text corpus that may contain references to the different terms in the knowledge graph implying
certain relationships. They introduce a method that uses attention to learn a joint embedding from
graph and text data for the task of knowledge graph link prediction.
Under certain settings (brain network construction, for instance) the datasets tend to be quite

small and noisy [Zhang et al. 2016]. The method proposed by [Zhang et al. 2016] uses side infor-
mation to regularize the graph construction process to highlight more discriminative patterns –
which is useful when the output graphs are used for graph classification. Exploring the possibility
of adding attention in this setting is interesting.

7.2 Heterogeneous graphs
While previous work [Han et al. 2018; Zhou et al. 2018] have applied attention on knowledge graphs
– which can be considered heterogeneous graphs – these models do not distinguish between the
different types of links and nodes explicitly. To the best of our knowledge, there currently does not
exist any work that has considered this setting.

7.3 Other special cases
GRAM [Choi et al. 2017] is a graph-based attention model for doing classification/regression on
clinical data. Clinical records can usually be described by clinical codes c1, · · · , c |C | ∈ C in a
vocabulary C. GRAM constructs a DAG whose leaves are the codes c1, · · · , c |C | while the ancestor
nodes are more general medical concepts. [Choi et al. 2017] uses an attention mechanism to learn a
k-dimensional final embedding of each leaf node i (medical concept) via:

gi =
∑

j ∈A(i)
αi, j ej .
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where A(i) denotes the set comprised of i and all its ancestors and ej is the k-dimensional basic
embedding of the node j. The use of attention allows the model to refer to more informative
or relevant general concepts when a concept in C is less helpful for medical diagnosis (e.g., it
is a rare concept). Since a patient’s clinical visit record is represented as a binary vector x ∈
{0, 1} |C | indicating which clinical codes were present for a particular visit the learned embeddings
g1, · · · , g |C | can be stacked to form a k × |C| embedding matrix to embed x; this can then be
inputted into a predictive model for medical diagnosis. Note that the problem of medical diagnosis
is a classical supervised learning task which takes clinical code feature vectors but GRAM applies
attention on a medical concept DAG for the purpose of embedding the given feature vectors.

8 DISCUSSION AND CHALLENGES
In this section we discuss additional issues and highlight important challenges for future work.

8.1 Graph generation
Several recent work [Liu et al. 2018b; You et al. 2018a,b] have also studied the problem of graph
generation in an adversarial setting [Goodfellow et al. 2014]. Many important problems in drug
discovery and material science are based on the principle of designing molecular structures that
exhibit certain desired properties. With this in mind, [You et al. 2018a] proposed a method for
generating structurally-valid molecular graphs which are also optimized based on the desired
properties. Meanwhile, [Liu et al. 2018b] explored the problem of generating parse trees that
represent syntactically-valid sequences (e.g., SQL queries).

The graph generation problem is a challenging problem since we are dealing with a large output
space of possible graphs and have to bias the generation process towards graphs that optimize
some desired objective. One interesting research direction that can be considered is the exploration
of novel attention mechanisms that can aid in the process of graph generation. For instance, GCPN
[You et al. 2018a] uses an iterative process to gradually add edges and substructures during the
graph generation process. It would be interesting to look at attention mechanisms that would allow
us to pinpoint crucial steps made in the past to help inform the decision making at the current step.

8.2 Scalability of graph attention models
The majority of methods [Bahdanau et al. 2015; Ma et al. 2017; Zhou et al. 2018] that calculate an
attention-based graph embedding work for relatively small graphs and may have trouble scaling
effectively to larger graphs. Methods like [Lee et al. 2018; Ryu et al. 2018; Shang et al. 2018] may be
able to work on larger graphs but these have their individual shortcomings.

For instance, GAM [Lee et al. 2018] uses attention-guided walks to sample from a graph. When
dealing with large graphs, these questions naturally arise: (1) Do we need longer walks and can an
RNN handle these? (2) Can walks effectively capture all task-relevant information from a graph,
especially if there are complex structural patterns involved? Methods like [Ryu et al. 2018; Shang
et al. 2018] that apply attention to a GCN architecture seem like a step in the right direction. We can
think of them as end-to-end differentiable versions of the Weisfeiler-Lehman algorithm [Duvenaud
et al. 2015; Shervashidze et al. 2011] with attention and these can be trained fairly quickly especially
if we train stochastically [Chen et al. 2018]. However, recent work has shown that various graph
neural network approaches including GCNs cannot distinguish between certain types of graph
structures [Xu et al. 2019].
There is a need to evaluate existing graph attention models on a variety of large real-world

graphs to test their scalability as well as their effectiveness on these datasets. Furthermore, it would
be useful to explore other ways of applying attention not simply to boost model accuracy but also
to improve the model runtime.
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8.3 Hierarchical graph representation learning
A large number of different graph neural networks [Duvenaud et al. 2015; Hamilton et al. 2017;
Kipf and Welling 2017; Velickovic et al. 2018] have been proposed recently. By and large, these
methods rely on a series of neural “message-passing” steps to aggregate information from a node’s
neighborhood to learn node representations. The embeddings learned by these architectures are
“flat” since information is only propagated through the edges of the graph and aggregation is not
done in a hierarchical manner.
Learning a hierarchical set of representations may be particularly beneficial for tasks such as

graph classification which aims to learn the label of an entire graph. [Ying et al. 2018] introduced a
method which can learn hierarchical representations of graphs by using a technique called differ-
entiable graph pooling. Graph pooling, when applied repeatedly, allows the method to gradually
coarsen the input graph by grouping related nodes together.

This technique is useful as it allows us to learn hierarchical representations for graphs which is
akin to how a convolutional neural network is able to learn hierarchical representations for images.
It may be useful to apply attention to the process of graph pooling. For instance, one question we
can ask is this: can attention be used to help identify the right cluster for each node during the
graph pooling step?

8.4 Attention-based methods for heterogeneous graphs
The study of heterogeneous graphs, also called heterogeneous information networks, has become
quite popular in recent years with many papers published in the area [Dong et al. 2017; Lee and
Adorna 2012; Sun et al. 2011, 2009a,b]. A Heterogeneous graph usually gives us a much richer
semantic view of the underlying data, when leveraged, this information can benefit solutions
for problems such as image search [Tsai et al. 2014], item recommendation [Hu et al. 2018], and
semantic user search [Liu et al. 2018c]. Please refer to [Shi et al. 2017] for a recent comprehensive
survey on heterogeneous graph-based methods.
While methods like GAKE, CCM, JointD/E+SATT are designed for knowledge graphs which

can be considered as a special type of heterogeneous graph, they do not explicitly differentiate
between the different kinds of links and nodes. Some recent work [Hu et al. 2018; Liu et al. 2018c;
Zhou et al. 2019] have studied attention-based models for heterogeneous graphs. However, given
the richness of problems that can arise from the study of heterogeneous networks, there is a need
to study novel attention mechanisms that can be applied to these networks.

8.5 Inductive graph learning
Some recent work have begun to investigate methods for inductive learning on graphs [Guo et al.
2018; Hamilton et al. 2017; Rossi et al. 2018] which is different from transductive learning. The
former is more useful than the latter as it can generalize to yet unseen data.
This setting is important as it allows graph-based methods to handle many real-world cases

where nodes and edges in graphs can appear dynamically. It also allows us to learn general patterns
in one graph dataset that can be useful in another dataset. This is similar to how transfer learning
is used to train a model on one text corpora for application on another text dataset [Dai et al. 2007];
another example is when a model is trained to recognize general shapes in a large image dataset and
this information is used on smaller dataset with much fewer samples [Oquab et al. 2014]. Another
interesting example of transfer learning is shown by [Zhu et al. 2011] where the transfer is done
across data from different domains (e.g., text to images).
An interesting direction for future study is looking at attention-based inductive learning tech-

niques that can be used to identify relevant graph patterns that are generalizable to other graph
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datasets. Looking further, we can also explore attention-based techniques that do cross-domain or
heterogeneous transfer learning [Zhu et al. 2011].

While the authors of methods like GAT [Velickovic et al. 2018] have conducted an initial study
of inductive learning on a small graph dataset, we believe more focused experiments should be
done on graph-based inductive learning taking into account a large set of datasets and settings.

8.6 Model interpretability
One of the advantages of attention is its ability to endow a model with a certain degree of inter-
pretability and, indeed, this is the reason why attention-based models are favored in task domains
where interpretability is of particular importance [Brown et al. 2018; Choi et al. 2017, 2016]. Among
the work we have surveyed, some simply tout the added predictive ability which attention brings
while others like HAHE [Zhou et al. 2019] and GRAM [Choi et al. 2017] have conducted some
analysis of the effects and behavior of attention in their work.

We believe that there is value in studying graph-based attention in more detail and with a focus
on interpretability. For instance, when studying an attention-based method for learning node
embeddings it would be interesting to analyze the kind of information each type of node prioritizes
and give an explanation as to why this is the case. Or, in the case of graph classification of molecular
graphs [Duvenaud et al. 2015], it would be interesting to see what important molecular sub-
structures are discovered by attention and how much these overlap with conventional knowledge.

8.7 Attention-guided attributed walk
Recently, Ahmed et al. [Ahmed et al. 2018] proposed the notion of attributed walk and showed that
it can be used to generalize graph-based deep learning and embedding methods making them more
powerful and able to learn more appropriate embeddings. This is achieved by replacing the notion
of random walk (based on node ids) used in graph-based deep learning and embedding methods
with the more appropriate and powerful notion of attributed walk. More formally,

Definition 12 (Attributed walk). Let xi be a k-dimensional vector for node vi . An attributed
walk S of length L is defined as a sequence of adjacent node types

ϕ(xi1 ),ϕ(xi2 ), . . . ,ϕ(xiL+1 ) (1)

associated with a sequence of indices i1, i2, . . . , iL+1 such that (vit ,vit+1 ) ∈ E for all 1 ≤ t ≤ L and
ϕ : x → y is a function that maps the input vector x of a node to a corresponding type ϕ(x).

The type sequence ϕ(xi1 ),ϕ(xi2 ), . . . ,ϕ(xiL+1 ) is the node types that occur during a walk (as
opposed to the node ids). It was shown that the original deep graph learning models that use
traditional random walks are recovered as a special case of the attributed walk framework when
the number of unique types t → n [Ahmed et al. 2018]. It should be noted that the node types here
do not necessarily refer to node types in heterogeneous graphs but can be calculated for nodes in a
homogeneous graph from their local structure.

Attention-based methods that leverage random walks (based on node ids) may also benefit from
the notion of attributed walks (typed walks) proposed by Ahmed et al.[Ahmed et al. 2018].

9 CONCLUSION
In this work, we conducted a comprehensive and focused survey of the literature on the important
field of graph attention models. To the best of our knowledge, this is the first work of this kind. We
introduced three intuitive taxonomies to group existing work. These are based on problem setting,
the type of attention mechanism used, and the task. We motivated our taxonomies through detailed
examples and used each to survey competing approaches from the taxonomy’s unique standpoint.
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We also highlighted several challenges in the area and provided discussion on possible directions
for future work.
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