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Abstract

Neuroimaging data typically undergoes several prepro-
cessing steps before further analysis and mining can be
done. Affine image registration is one of the impor-
tant tasks during preprocessing. Recently, several im-
age registration methods which are based on Convo-
lutional Neural Networks have been proposed. How-
ever, due to the high computational and memory re-
quirements of CNNs, these methods cannot be used in
real-time for large neuroimaging data like fMRI. In this
paper, we propose a Dual-Attention Recurrent Network
(DRN) which uses a hard attention mechanism to allow
the model to focus on small, but task-relevant, parts
of the input image – thus reducing computational and
memory costs. Furthermore, DRN naturally supports
inhomogeneity between the raw input image (e.g., func-
tional MRI) and the image we want to align it to (e.g.,
anatomical MRI) so it can be applied to harder regis-
tration tasks such as fMRI coregistration and normal-
ization. Extensive experiments on two different datasets
demonstrate that DRN significantly reduces the compu-
tational and memory costs compared with other neural
network-based methods without sacrificing the quality
of image registration.
Keywords: Attention Model; Recurrent Neural Net-
work; Deep Learning; fMRI

1 Introduction

Neuroimaging analysis and mining, which aims to model
the functional structure of the brain [35] or extract di-
agnostic information [29] from a corpus of neuroimaging
data, has attracted a lot of interest recently. However,
raw neuroimaging data is usually quite noisy and incon-
sistent across samples [18]. Hence, the data typically
undergoes a series of preprocessing steps before it can
be further analyzed.

Affine registration is one of the most common tasks
performed during preprocessing [2, 7, 14]. The goal of
image registration is to spatially transform a raw im-
age to match a given template image. Three types of
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image registration techniques, i.e., realignment, coreg-
istration, and normalization, are commonly applied on
neuroimaging data. All three types of registrations are
performed during preprocessing for a variety of brain
mining tasks including brain atlas discovery [23], region-
of-interest extraction [34], brain network discovery [18],
and disease detection [29]. We illustrate the three tech-
niques in Figures 1a-1c.

Automatic image registration has been extensively
studied not only in the neuroscience domain [7, 9, 14],
but also in other fields like pattern recognition [6, 31]
and geoscience [22, 27]. More recently, some studies
have used Convolutional Neural Networks (CNN) for
medical image registration [19, 24]. Compared to
traditional approaches [7, 14], the CNN-based methods
can achieve faster processing speeds [24] while avoiding
the use of generic matching metrics which have some
severe drawbacks [19].

However CNNs may not be an ideal solution for
real-time registration tasks on functional Magnetic Res-
onance Imaging (fMRI), due to their high memory and
computational costs. As we illustrate in Figure 3, ap-
plying CNNs on high-dimensional fMRI data may result
in extremely large feature maps. For example, the 3D
fMRI data from a single timepoint can have a size of
96 × 96 × 96. Suppose we use only 10 convolutional
filters at the first layer, the dimension of the resulting
feature map will be 96×96×96×10 = 8, 847, 360. Fur-
thermore, CNNs also suffer from heavy computational
costs. The number of multiplications in a 2D convolu-
tional layer is O(H ×W ×N ×x× y× c), where H, W ,
N are the corresponding height, width, and number of
filters, while x, y, c are the height, width, and channels
of the inputs. Such high costs in memory and compu-
tation make CNNs inefficient for real-time registration
of neuroimaging data.

CNNs have a high associated cost because they
have to scan the entire input image to calculate global
features. However, the nature of the image registration
task lends itself well to solutions that merely consider
very limited partial information from the image. As
shown in the examples in Figure 2, we only need to look
at the nose (small region) to align a rotated human face,
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Figure 1: (a), (b), (c) show three different tasks to preprocess neuroimaging data. All three tasks can be considered
as special cases of affine registration. (d), (e), (f) are three atomic types of affine trasformation

or we only need the position of the face (coarse global
information) while ignoring a lot of other details to align
a translated face. These properties of our task inspired
us to consider the hard attention mechanism to solve
this highly complex problem.

In 2014, Mnih et al. proposed a reinforcement
learning approach for visual tasks called the Recurrent
Attention Model (RAM) [25]. RAM controls an n-step
agent as it performs actions by moving its sensor over
the input image (environment). At each step, the sensor
of RAM takes a “glimpse” of the image. Because the size
of each glimpse is typically much smaller than that of
the input image, and the number of glimpses is usually a
tiny constant, RAM’s computational and memory costs
can be much lower than that of a CNN.

In this paper, we discuss how to build a recur-
rent attention-based model for 3D image registration
on high-dimensional fMRI image. We address several
unique challenges for applying a recurrent attention
model on our task. Firstly, the range and histogram
of voxel values between the raw image and the tem-
plate image can differ significantly. Furthermore, the
size of the objects in the two images can differ quite
significantly as well. This inhomogeneity between the
raw image and the template image can harm the per-
formance of RAM significantly, since it only has a single
attention mechanism. To solve these problems we pro-
pose a model with dual-attention.

Our idea and contribution: In this paper, we
formulate image registration as a regression problem.
We study how to design a neural network based model
which can handle different kinds of registration. To deal
with the problems of high computational complexity
and image heterogeneity, we proposed a Dual-Attention
Recurrent Network (DRN) and compared it against

multiple state-of-the-art approaches, including CNN,
RAM [25], and DSL [19], on four different image
registration tasks. The experiment results clearly show
that DRN outperforms all the baselines on all the tasks,
indicating that it is a promising approach for real-time
and universal image registration.

2 Problem Formulation

In this section, we introduce some related concepts and
then define the problem.

2.1 3D affine registration on neuroimaging data
An affine transformation is a function that maps an
object from an affine space to another while preserving
distance ratios but changing the position, orientation,
or size of the object. Three atomic operations of affine
transformation: translation, rotation, and scaling, are
shown in Figures 1d-1f.

In neuroimage preprocessing, we often encounter
three kinds of 3D image registration tasks involving
affine transformation: Realignment, Coregistration and
Normalization (Figures 1a-1c).

Realignment: Also called motion correction. An
fMRI record of a patient can be viewed as a time
sequence containing multiple 3D fMRI images. Patients
may move their heads slightly while undergoing an MRI
scan. This causes the voxels in the same position to
correspond to different anatomical locations at different
time points. As its name suggests, the goal of the task
is to realign the images in an fMRI record.

Coregistration: It is an alignment between two
brain images which are usually derived using different
techniques, e.g., anatomical MRI and functional MRI
scans. Coregistration is usually used to line up a
functional image and a structural image, so the voxels
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Figure 2: The computational and memory costs of image registration can be reduced by using only local details
or coarse global information. (a) For registrations which involve only rotation, the local details in a small region
are sufficient to solve the problem (e.g., we can rotate the face to align it with the template by simply focusing on
the nose). (b) For registrations which involve a translation, the coarse global information in a small downsampled
image is sufficient to solve the problem.

from the same position in each image now correspond
to the same anatomical location.

Normalization: Normalization is like coregistra-
tion, but with different inputs. To overcome variabil-
ity in the shapes and sizes of scans from different indi-
viduals, normalization aligns the neuroimaging scans of
multiple individuals to a single brain template. In this
paper, we focus on normalization with linear transfor-
mation.

2.2 Problem formulation Figures 1a-1c show that
realignment, coregistration, and normalization can be
viewed as matching a raw fMRI image to a template
image via affine transformation. The only differences
between them are the particular templates and trans-
formations that are used.

General affine transformation can be denoted as a
vector a = (tx, ty, tz, rx, ry, rz, sx, sy, sz), in which tx,
ty, tz indicate translations along three axes, rx, ry,
rz indicate rotations around three axes, and sx, sy,
sz indicate scaling. For realignment and coregistra-
tion, the transformations are rigid (i.e., no scaling is
involved). Based on the above, we can formulate re-
alignment, coregistration, and normalization as regres-
sion problems.

Problem: We are given a set of samples D={(Ri,
Ti)}, where Ri ∈ Rx×y×z denotes a raw 3D image
while Ti ∈ Rx×y×z denotes the 3D template image.
For each pair (Ri, Ti), there exists a vector ai ∈ R9

which denotes the ideal affine transformation from Ri

to Ti (similarly, ai ∈ R6 if the task is realignment or
coregistration). Given a parametric function fθ : D 7→
R9, the goal is learn parameters θ such that:

arg minimize
θ

∑
(Ri,Ti)∈D

‖fθ(Ri,Ti)− ai‖2(2.1)

Now the problem is a typical regression problem.
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Figure 3: Existing CNN-based approaches [19, 24] have
high computational memory cost when the input image
is very large. On the other hand, a recurrent attention
model’s memory cost is not related to input size.

Note that 2D image registration can be defined in a
similar way where the transformation is in the 2D space.

3 The Proposed Method

We now describe our proposed Dual-Attention Recur-
rent Model which is inspired by the RAM model [25].

3.1 3D glimpse sensor and dual-attention
glimpse network At each time step, the DRN uti-
lizes its 3D glimpse sensor as well as the dual-attention
glimpse network to construct a glimpse representation
g. The representation g encodes information from small
parts of the input images (i.e., the raw image and the
template image).

3D glimpse sensor: As shown in Fig 4b, given
a 3D image I, a location l = (i, j, k), and a glimpse
scale s, the sensor extracts a set of s cropped images
{C1, · · · ,Cs} from image I. The cropped images are
centered at (i, j, k). The length of a cropped image
Cm+1’s sides are always twice that of Cm. For instance,
if C1 has shape 2 × 2 × 2, then C2 should have shape
4 × 4 × 4. Finally, all cropped images C1, · · · ,Cs are
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Figure 4: A) Dual-attention glimpse network fG:
Given a raw image, a template image, and two locations
l1 and l2 (one for each image, respectively), fG uses two
3D sensors to extract a 3D glimpse from each of the
two images at locations l1 and l2, respectively. The
glimpse and location for the raw image are mapped
by fully connected layers fg0 and fg1, respectively, and
their outputs are concatenated and encoded by layer
fg4. Similarly, we use layers fg2, fg3, fg5 to encode the
glimpse and location for the template image. Finally,
the outputs of fg4 and fg5 are concatenated as a single
glimpse representation g. B) 3D glimpse sensor:
Given a 3D image and a location l, the sensor extracts 3
cropped images centered at l with varying scales forming
a 3D retina-like glimpse [25]. C) Overall structure
of DRN: The DRN is an RNN. At the i-th step, the
core network fH takes gi generated by fG and internal
state hi from the previous step and generates a new
internal state hi+1. The location network fL uses hi+1

to stochastically generate the next locations l
(1)
i+1 and

l
(2)
i+1 (for the raw image and the template image). At the

last step, the action network fA uses the final internal
state hn+1 to produce an affine transformation, which
matches the raw image to the template image.

resized to the same size as C1, concatenated together
and then flattened into a glimpse vector x.

DRN uses two sensors to extract two glimpse vec-
tors. The first vector xr is extracted from the raw image
Ir at location lr while the second glimpse xt is taken
from the template image It at location lt. We then use
a dual-attention glimpse network to encode xr, lr, xt,
lt into a single glimpse representation g.

Dual-attention glimpse network fG: As shown
in Figure 4a, the glimpse network is composed by 6
fully connected layers. Let fgi(x) = σ(W>

i x + bi)
denote a fully-connected layer, parameterized by weight
matrix Wi and bias vector bi, with ReLU activation
σ and input x. The glimpse xr and the location lr
from the raw image are encoded as x′r = fg0(xr) and
l′r = fg1(lr), respectively. Similarly, xt and lt from
the template image are encoded as x′t = fg2(xt) and
l′t = fg3(lt). Finally, we construct the glimpse vector

for the raw image g′r = fg4(x′r || l′r) where || represents
concatenation. Similarly, g′t = fg5(x′t || l′t). Finally,
we concatenate to produce the glimpse representation
g = g′r ||g′t.

3.2 Dual-attention recurrent network Similar to
RAM, the DRN model is an RNN. Fig 4c shows the
whole structure of DRN. We have described the 3D
glimpse sensor and the glimpse network fG above, here
we describe the remaining components of DRN.

Core network fH : Given the glimpse representa-
tion gi and the hidden internal state hi at step i, we
calculate the new internal state hi+1 = fH(gi,hi) using
the core network, so the history of all the glimpses we
have seen up to step i is encoded in hi+1. Here we use
basic LSTM cells to form fH .

Location network fL: The locations of the two
sensors are denoted as a vector l=(lxr , l

y
r , l

z
r , l

x
t , l

y
t , l

z
t ).

The sub-vector l(1)=(lxr , l
y
r , l

z
r) denotes the location on

the raw image, and l(2)=(lxt , l
y
t , l

z
t ) denotes the location

on the template image. For step i, location li is
chosen from a 6D Gaussian distribution N (µi,σ). Here
µi = fL(hi), where fL is a single fully connected layer
with tanh activation. On the other hand, σ is the user-
specified standard deviation.

Action network fA: Taking the internal state hn
at the last recurrent step n as the input, the action
is to predict the transformation parameter vector ap
which maps the raw image to the template. The action
network fA(hn) = ap is a three layer fully connected
network. The activation functions are ReLU’s except
for the last layer which has no activation. The reward
for the action is formulated as:

r = 1− ‖ap − at‖2

length(ap)
(3.2)

where at is the ground truth transformation that aligns
the two images perfectly. Prediction is only performed
at the last step and each of the agent’s movements
(i.e., generated locations) is assigned the same reward
(Eq. 3.2).

The n-step agent’s interaction on the input
image can be denoted by a sequence S1:n =
(x1, l1,x2, l2, · · · ,xn,ap). It can be viewed as a case of
Partially Observable Markov Decision Process [25]. The
true state of the environment is static but unknown.
Here we use θ to denote the parameters of the above
RNN. The agent needs to learn a policy π(li|S1:i−1; θ)
to maximize the expectation of reward:

J(θ) = Ep(S1:n;θ)

[
n∑
i=1

rli|S1:i−1

]
(3.3)

The rli|S1:i−1
is the reward for the location at the i-th
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step. In this work, all the rewards rli|S1:i
are equal and

computed by Eq. 3.2.

3.3 Training Similar to [25], we use the REIN-
FORCE algorithm as defined by [32] to solve the prob-
lem above. The gradient of J can be approximately
computed by:

∇θJ =
1

m

m∑
j=1

n∑
i=1

∇θlog
(
π
(
lji |S

j
1:i−1; θ

))
rj(3.4)

where m denotes the number of episodes. Recall we as-
sume that li is generated from a Gaussian distribution,
of which the covariance matrix is fixed and the mean is
the output of location network at step i, hence Eq. 3.4
is equivalent to:

∇θJ =
1

C

m∑
j=1

n∑
i=1

∇θ
(
lji − fθ

(
xji−1, l

j
i−1,h

j
i−1

))
rj

(3.5)

where fθ(x
j
i , l

j
i ,h

j
i ) is the network at the i-th step for

the j-th episode, taking the outputs from previous steps
and outputting the mean value µji of the Gaussian

distribution generating lji . C is a constant and ∇θfθ
can be computed by standard backpropagation.

Using hybrid supervised loss: The above can
only be used to train the glimpse, core, and location
networks but not the action network. Because the final
action ap is only used to compute the reward, which
is not differentiable (Eq. 3.2). So we also combine
the mean squared loss between ap and at to train the
action network, glimpse network and core network. The
location network is trained via REINFORCE only.

4 Experiments

4.1 Data collection In order to evaluate the perfor-
mance on different registration tasks, we test our meth-
ods on 2 datasets.
• MNIST dataset: The original MNIST dataset can

be obtained using the TensorFlow API1. It contains
60, 000 handwritten digits in the training set and 10, 000
in the test set. We first use MNIST to study 2D image
registration tasks (since our model can also handle the
2D case), in which we randomly translate, rotate, and
rescale the digits in each image.
• Bipolar disorder dataset (BD): We also test 3D
image realignment, coregistration, and normalization on
a Bipolar Disorder Dataset which we obtained from the
University of Massachusetts Medical School. It contains
neuroimaging data for 39 subjects. For each subject,
we have a corresponding fMRI image with dimension
96×96×50×156 (3D spatial + 1D temporal dimensions)
and a T1-Weighted (anatomical brain structure) image
with dimension 170× 256× 256.

4.1.1 Data augmentation Data augmentation is a
necessity in medical image registration research [19]. We
use data augmentation to generate more samples and
labels. We now explain the two ways we apply data
augmentation for the different registration tasks.

We use the first approach to generate data for
3D realignment. Similar to the approach used in
[19], we first extract a 3D brain image (a time slice)
from 4D fMRI data and center it in a 96 × 96 ×
96 black background. This image is used as the
template. We then de-align the template via a random
3D rigid transformation t and treat the de-aligned image
as the raw image. The ground truth is simply the
inverse transformation of t. We also used the same
data augmentation on the 2D registration task, but
the random transformations on MNIST are 2D affine
transformation with scaling.

For 3D coregistration and normalization, we need
to start with an fMRI image that is correctly aligned
with a given template. To achieve this, we aligned
each fMRI image R to a template T by using the well-
known neuroimaging toolbox FSL2 to get an aligned
image R′. A human expert can also accomplish this
using manual alignment. We then randomly de-align
via a random transformation of which the inverse is
the ground truth and use the de-aligned image as the
raw image. For the task of 3D coregistration, the
template for each subject is the subject’s brain anatomic
scan and the random transformation is rigid. For the
task of 3D normalization, all the subjects take the
same MNI152 standard image as the template, and
the random transformation is affine including scaling.
We illustrate this process in Fig 5. We summarize the
random transformations for each task in Table 1.

1https://www.tensorflow.org/
2https://fsl.fmrib.ox.ac.uk/fsl/



4.2 Compared methods In order to validate the
effectiveness of DRN, we compared the following:
• Fully Connected Neural Network (FC): We
compare with a fully connected neural network with two
hidden layers. For 2D registration, the first hidden layer
consists of 100 neurons while the second has 50. For 3D
registration, both layers have 50 neurons due to GPU
memory limit.
• Convolutional Neural Network (CNN): The
CNN has a convolutional layer, a pooling layer, and
two fully connected layers similar as above. The
convolutional layer has 128 filters with filter size 5 × 5
followed by 2× 2 max-pooling.
• Recurrent Attention Model (RAM): We com-
pared against an RAM [25] model whose parameters
are almost comparable with our proposed model. For
fair comparison, this model is still able to see both the
de-aligned and the template images.
• Deep Supervised Learning agent (DSL): DSL
is a state-of-the-art artificial agent for 3D rigid regis-
tration [19]. The agent is instructed to mimic a greedy
registration path, which minimizes the distance between
two images step by step. The overall structure looks like
a DQN, however the ground truth Q value can be cal-
culated explicitly. To predict the Q value, we trained
a CNN with five convolution layers with 8, 32, 32, 128,
and 128 filters. We didn’t adopt the hierarchical strat-
egy designed for extremely high resolution images in the
original paper since our dataset has lower resolution.
• Double-attention Recurrent Network (DRN):
This is our proposed model. In the glimpse network,
each of the four layers encoding image or location is
composed by 128 neurons, and each of the last two
layers encoding glimpse representation is composed by
256 neurons. The core network has 128 LSTM cells.
The action network is the same as the FC above.

4.3 Performances evaluation

4.3.1 Assessment metric We use an assessment
metric similar to [7]. Since we treated image registration
as a regression problem, the assessment metrics are
the average errors of translation, rotation and scaling.
Error in translation is defined by Manhattan distance
between the predicted translation and ground truth
translation. The errors for rotation and scaling can be
defined similarly.

4.3.2 Performances on 2D hand-writing digits
image registration We first study the effectiveness
of the proposed method on 2D registration. For all
methods, the max training iterations is 700K, initial
learning rate is 0.1 while decay rate is 0.1, and batch

Table 1: Range of affine transformation on each task.

Transformation

Task Translation Rotate Scale
(pixels) (degree) (times)

2D registration ± 20 ± 120 1 ∼ 3
3D realignment ± 20 ± 45 -
3D coregistration ± 20 ± 45 -
3D normalization ± 20 ± 45 0.8 ∼ 1.3

size is 128. For our method, the number of glimpses is
8. The sensors used in RAM and DRN are 2D sensors.
The crop size of the sensor is 8 × 8 and the glimpse is
composed by three different resolutions (8× 8, 16× 16,
and 32 × 32). Samples are generated using the process
described in Section 4.1.1 and images are embedded
into a 100× 100 black background.

Table 2 shows the average error for all methods on
the three tasks. We also show each methods relative
rank for each task. The results show that the proposed
method clearly outperforms all the baselines. Compared
to FC and CNN, DRN uses much less neurons, but
achieved obviously better results. In particular, RAM
has the lowest performance, which supports our assump-
tion that adding a second attention mechanism can sig-
nificantly reduce regression error. DSL achieves slightly
better results for rotation, but its translation error is
very high. There is no scaling result for DSL since it is
designed for rigid transformations.

4.3.3 Performances on 3D brain image registra-
tion We then study the effectiveness of the proposed
method on 3D realignment, coregistration, and normal-
ization. Due to the large size of brain images, the batch
size is reduced to 16. For RAM and DRN, we increase
the number of glimpses to 16, and the crop size of the
sensor to 20× 20× 20, because compared with MNIST,
the object-to-background ratio is much higher for brain
images. For each subject (patient) we extract a time
slice from their fMRI and generate synthetic samples
using the method in Section 4.1.1.

Table 3 shows the performances of the compared
methods on BD including their relative performance.
Again, our method significantly outperforms all the
baselines. Again, DRN always outperforms RAM, es-
pecially on the task of normalization. The low per-
formance of RAM on normalization probably indicates
that the use of a single sensor is very sensitive to scal-
ing. By contrast, our dual-sensor architecture is able
to greatly reduce the average error on all three kinds
of transformation. We also tested DSL on realignment,
showing average errors which are very high. One pos-
sible reason may be that DSL is originally designed for
CT images which have higher resolution but are less



Table 2: Results on MNIST for 2D registration. The
results are reported as “average performance (rank)”.

Average Error

Method Translation Rotation Scaling

FC 0.11 (2) 0.46 (4) 0.40 (3)
CNN 0.12 (3) 0.40 (3) 0.35 (2)
RAM 0.35 (4) 0.49 (5) 0.65 (4)
DSL 0.58 (5) 0.19 (1) -
DRN 0.09 (1) 0.20 (2) 0.26 (1)

Table 3: Results on BD for 3D registrations. The results
are reported as “average performance (rank)”.

Average Error

Task Method Translation Rotation Scaling

Realignment

FC 0.39 (4) 0.68 (4) -

CNN 0.28 (3) 0.41 (3) -
RAM 0.24 (2) 0.35 (2) -

DSL 1.21 (5) 0.80 (5) -

DRN 0.20 (1) 0.20 (1) -

Coregistration

FC 0.38 (4) 0.61 (4) -

CNN 0.27 (3) 0.48 (3) -
RAM 0.22 (1) 0.39 (2) -

DRN 0.22 (1) 0.32 (1) -

Normalization

FC 0.31 (3) 0.55 (3) 0.91 (3)
CNN 0.25 (2) 0.40 (2) 0.89 (2)

RAM 0.44 (4) 1.38 (4) 1.37 (4)

DRN 0.19 (1) 0.20 (1) 0.77 (1)

noisy compared to fMRI. Fig. 6 visualizes examples of
the results of all the 3D registrations achieved by DRN.

4.4 Computational and memory complexity
analysis The most important motivation of this paper
is to find an alternative deep network architecture with
lower computational and memory costs as an alterna-
tive for CNN-based methods for image registration. In
Tables 4 and 5, we report the costs of all baselines and
our method on 2D and 3D tasks.

Memory cost can be divided into two parts: the
number of neurons and weights. We don’t consider
the biases since the number of weights is dominant.
Similarly, for computational cost we only consider the
number of multiplications instead of additions.

From Tables 4 and 5, we can see that CNN always
has very high computational cost as well as number of
neurons and parameters. The reason for the larger pa-
rameter size is because the CNN uses a single convolu-
tional layer, so the input feature to its fully connected
layer is large. DSL is also based on CNNs but its param-
eter size is smaller, because it has five convolutional lay-
ers and fewer filters at early layers. However, the com-
putational cost of DSL is much higher than other meth-

Table 4: Computational and memory costs on MNIST
Dataset. Results are reported as “cost (rank)”.

Cost

Method Computational Number Number
cost(flop) of neurons of weights

FC 1.28× 106 (3) 156 (1) 106 (4)
CNN 3.20× 107 (4) 1.28× 106 (5) 3.20× 107 (5)
RAM 6.07× 105 (1) 796 (2) 1.01× 105 (1)
DSL 3.56× 109 (5) 2.07× 105 (4) 6.27× 105 (3)
DRN 6.84× 105 (2) 1052 (3) 1.75× 105 (2)

Table 5: Computational and memory costs on Bipolar
Disorder Dataset. Results are reported as “cost (rank)”.

Cost

Method Computational Number Number
cost(flop) of neurons of weights

FC 2.50× 108 (3) 156 (1) 1.95× 108 (4)
CNN 6.29× 109 (4) 2.50× 108 (5) 3.20× 109 (5)
RAM 5.02× 107 (1) 796 (2) 3.16× 106 (1)
DSL 8.64× 1011 (5) 9.76× 106 (4) 6.53× 106 (3)
DRN 9.93× 107 (2) 1052 (3) 6.30× 106 (2)

ods, because DSL needs to call its CNN many times.
The fully-connected network has the smallest number
of neurons, but its parameter size is also large. RAM
has the lowest cost for both computation and memory,
however its accuracy can be very low in some cases as
we have pointed out. The proposed DRN is significantly
more efficient in computation and space than most of
the baselines. Compared with RAM, our proposed DRN
has slightly higher computational and memory costs,
because DRN has an additional attention mechanism
for two sensors while RAM only controls one sensor.
Even so, the costs for both DRN and RAM are actually
at the same order of magnitude.

4.5 Influence of parameters In this section, we
study the influence of glimpse scale. Recall that a
glimpse representation is composed by several cropped
images with different glimpse scales extracted from an
image at the same location. In the above experiments,
a glimpse has three scales, of which the smallest scale
has the highest resolution but smallest view range, while
the largest scale has the largest view range but lowest
resolution. As shown in Table 6, we observe a larger
degradation in performance when we only use the high
resolution scale. Similarly, using only the low resolution
scale is slightly worse than combining all scales together,
although there is a smaller gap in performance.

We designed another experiment on the MNIST
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Figure 6: Visualization of results achieved by DRN on three different 3D registrations of neuroimaging data.

Table 6: Discussion on glimpse scale on brain image.

Average Error

Glimpse scale Translation Rotation Scaling

High Resolution 0.25 0.42 0.99
Low Resolution 0.15 0.20 0.74
All Resolution 0.12 0.26 0.72

Table 7: Discussion on glimpse scale on digit image.

Average Error

Glimpse scale Translation Rotation

High Resolution 0.30 0.87
Low Resolution 0.11 1.48
All Resolution 0.15 0.91

dataset. In this experiment, every digit is embedded
in a 96 × 96 background and then stacked 96 times to
form a 3D digit, then a random rigid transformation is
performed. Unlike the brain 3D image, the object in
the 3D digit image is small compared to the size of the
background. The average errors of DRN using different
levels of glimpse are shown in Table 7. It illustrates
that only using the high resolution scale can achieve
small error on rotation but high error on translation. On
the contrary, only using low resolution scale can achieve
high error on rotation but low error on translation, due
to it has large view range. Combining the different
scales together can reduce both errors on translation
and rotation and is a good middle ground.

5 Related Work

Many different algorithms have been designed for image
registration. In earlier work, algorithms for this prob-
lem used similarity measures based on the difference in
pixel values [5, 21]. Due to the multi-modal nature of
coregistration for human neuroimaging data, new simi-
larity measures had to be defined. Collignon et al. [7]
proposed an information theoretic approach to solve 3D
rigid coregistration by using mutual information as a
matching criteria. Ashburner and Friston [2] proposed
a unified framework for coregistration and tissue seg-
mentation. Meanwhile, Gartus et al. [9] conducted ex-
periments to compare the output of automatic methods

with that of human experts. Several feature-based al-
gorithms were also proposed by Rangarajan et al. [28],
Pang et al. [27], and Ma et al. [22]. Finally, Benjemaa
and Schmitt [6], Williams [31], Arun et al. [1] and Guo
et al. [12] proposed pattern recognition-based methods.

In recent years, deep learning has achieved great
success in numerous tasks. In 2012, Krizhevsky et
al. [16] proposed a method using CNNs for image
classification which demonstrated outstanding results.
More recently, researchers have begun to explore CNN-
based approaches for neuroimaging data. Nie et al.
[26] used CNNs for survival time prediction of brain
tumor patients. Lee et al. [18] proposed a CNN-based
approach for classification of fMRI time sequences.
Hosseini et al. [15] used a CNN to extract high level
features from fMRI. Recently, Liao et al. [19] proposed
an approach based on deep supervised learning. It
achieves state-of-the-art performance on the registration
of 3D medical images.

Deep attention models have been proposed for var-
ious tasks in computer vision [3, 8, 17, 30] and natural
language processing [4, 33]. RAM [25] is a recurrent at-
tention model which was proposed to reduce the compu-
tational complexity associated with processing large im-
age data. Recently, Haque et al. used the RAM method
for Depth-Based Person Identification [13]. Multiple
work have also been published introducing various types
of attention with RNN [10, 11, 20, 36].

6 Conclusion

We proposed a deep dual-attention recurrent model as a
computationally-efficient solution for various affine reg-
istration problems in neuroimaging. In particular, the
dual-attention mechanism is able to handle inhomogene-
ity between the raw image and the template. Experi-
mental results on two different datasets evaluating three
different types of image registrations show that our pro-
posed method can outperform the state-of-the-art while
keeping computational and memory costs low.
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