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Abstract

The analysis of multiple time series data, which are gener-

ated from a networked system, has attracted much attention

recently. This technique has been used in a wide range of ap-

plications including functional brain network analysis of neu-

roimaging data and social influence analysis. In functional

brain network analysis, the activity of different brain regions

can be represented as multiple time series. An important

task in the analysis is to identify the latent network from the

observed time series data. In this network, the edges (func-

tional connectivity) capture the correlation between different

time series (brain regions). Conventional network extrac-

tion approaches usually focus on capturing the connectiv-

ity through linear measures under unsupervised settings. In

this paper, we study the problem of identifying deep nonlin-

ear connections under group-contrasting settings, where we

have two groups of time series samples, and the goal is to

identify nonlinear connections that are discriminative across

the two groups. We propose a method called GCC (Graph

Construction CNN) which is based on deep convolutional

neural networks for the task of network construction. The

CNN in our model learns a nonlinear edge-weighting func-

tion to assign discriminative values to the edges of a network.

Experiments on a real-world ADHD dataset show that our

proposed method can effectively identify the nonlinear con-

nections among different brain regions. We also demonstrate

the extensibility of our proposed framework by combining it

with an autoencoder to capture subgraph patterns from the

constructed networks.

1 Introduction

The task of inferring the structure of an underlying
graph from a given set of time series is a problem with
many practical applications. For instance, the activities
of different users over time in an online social network
can be explained by an influence graph which is unob-
served [14]. From a marketing perspective, the abil-
ity to infer this graph from the given user activities
is useful since it allows companies to target influential
individuals on the network. Another example of net-
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Figure 1: An example of constructing a functional brain
network from the fMRI data of one human subject.

work construction can be found in the study of func-
tional brain networks [4, 5, 18] which has become quite
popular recently. These networks can be constructed
by measuring the correlation of the activity of differ-
ent brain regions in a functional magnetic resonance
imaging (fMRI) scan. Analyzing the networks gives
researchers the ability to identify “clinically significant
connectivity patterns of brain regions.”

Network construction is an important step in net-
work analysis. Figure 1 illustrates the steps involved
when doing brain network analysis on fMRI data. It is
clear that the network construction step is a crucial one.
The quality of the results that one can hope to get by
analyzing the brain network is dependent on the quality
of the brain construction technique. In other words, the
ability to find interesting and useful information from
an inferred network is highly dependent on the quality
of the construction process.

The problem of constructing a graph from time
series data has attracted much attention recently [7,
8, 15, 20, 23]. Many conventional approaches use a
linear measure of correlation to capture the relationship
between different nodes in a network [2, 8]. However, in
many real-world cases the correlation between different



time series are highly nonlinear. Figure 2 shows a case
when a linear measure like Pearson’s correlation may
assign the same correlation value to two pairs of time
series that have different nonlinear relationships. A
nonlinear measure, on the other hand, can give different
values and is hence capable of capturing the difference.
Other works [20] treat the problem as a supervised link
prediction problem where the labels (i.e. whether there
is a link or not) for each pair of time series is known.
However, in many real-world cases the link labels are
quite difficult to acquire while the label for the entire
set of time series is relatively easy to get. For instance,
in neuroimaging datasets the ground truth labels for the
edges in a functional network is unknown but the label
for each sample (e.g., whether the fMRI scan belongs to
an ADHD patient or not) is given.

In the group-contrasting setting, only the set of
time series and their labels are given. The network con-
struction problem under this setting then corresponds
to learning a discriminative nonlinear edge-weighting
function with the following properties: (1) Inter-group:
the weighting function tends to extract different edge
weights for samples in different groups; and (2) Intra-
group: the weighting function tends to extract similar
edge weights for samples in the same group. The prob-
lem is challenging because the relationship between dif-
ferent time series can be highly nonlinear. Also, this
relationship has to be learned from pairs of time series
whose labels are not given.

In this paper, we tackle the important problem of
group-contrasting network construction by proposing a
technique, called GCC, based on convolutional neural
networks (CNN). CNNs have proven to be a particularly
suitable model for a wide variety of tasks [1, 10, 12].
In our architecture, the CNN tries to learn a discrim-
inative nonlinear edge-weighting function for network
construction. We combine multiple CNNs in a unified
architecture so that training can be done via backprop-
agation on the error of the predicted group label. To
the best of our knowledge, this is the first work that
attempts to use deep learning to solve the problem of
group-contrasting network construction.

The main contributions of this work can be summa-
rized as follows:

• We propose a method based on CNNs that learns
the nonlinear correlations between pairs of time
series. The goal is to discover an edge-weighting
function which can assign discriminative values to
the edges of positive and negative networks.

• To combat the problem of overfitting, we propose
an architecture that uses a technique similar to
Dropout [17] to help the model generalize. We
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Figure 2: An example of a nonlinear group-contrasting
measure on two sets of time series (for two human
subjects over the same brain regions). The regions t1
and t2 have different nonlinear correlations.

also demonstrate the general nature of the proposed
framework by testing a variation of it where it is
coupled with an autoencoder layer.

• We perform experiments on a real-world ADHD
dataset. We show that it outperforms several base-
line methods in terms of accuracy when the derived
brain networks are used as input for classification.

2 Problem Definition

In this section, we briefly define the problem of network
construction from multiple time series under the group-
contrasting setting. Given a set of labeled time series,

D =
{

(T(i), y(i))
}

, T(i) =
(
t
(i)
1 , · · · , t(i)m

)
∈ Rn×m

corresponds to the i-th example in D (e.g., the i-th
human subject), which contains m time series (e.g., the

activities of m brain regions). Here t
(i)
j ∈ Rn denotes

the j-th time series of the i-th sample. y(i) ∈ {−1, 1}
denotes the group assignment of T(i). For example,
in neuroimaging applications, a sample of time series
(e.g., the fMRI scans of one human subject) will be
labeled as positive (i.e., y(i) = 1), if the human subject
has a certain neurological disorder, such as ADHD.
Otherwise, the sample of time series T(i) will belong
to the normal control group, i.e., y(i) = −1.

The goal of network construction is to infer a
weighted undirected graph G(i) =

(
V,E(i), E(i)

)
from

each time series sample T(i). Here the set of vertices
V = {v1, · · · , vm} corresponds to the set of m vari-
ables in the time series (e.g., the m brain regions in
neuroimaging applications). Following previous works
[11], we assume that V is shared across all samples in
D. The edge set E(i) ⊆ V ×V is the set of links between
these variables (brain regions), and E(i) : E(i) 7→ R



is a weighting function that maps each edge in the
graph to a weight. The weight associated with each
edge E(i)(vp, vq) represents the nonlinear correlations

between the two time series t
(i)
p and t

(i)
q under the

group-contrasting setting. In group-contrasting set-
tings, we want to learn a discriminative edge-weighting
function which has the following properties: (1) Inter-
group: the weighting function tends to extract differ-
ent edge weights for a pair of samples T(i) and T(j),
if they belong to different groups, i.e., y(i) 6= y(j); (2)
Intra-group: If y(i) = y(j), the edge weights on the two
samples should have similar values.

3 Methodology

3.1 CNN Background Our proposed framework is
based on CNNs, which are built by stacking one or more
pairs of convolution and max-pooling layers together
[12]. A convolution layer learns a set of filters, whose
receptive fields are each relatively small. Each filter,
however, is replicated across the entire input space with
the replicated units sharing parameters with the original
filter. The output of a convolution between the input
and a particular filter is a feature map; when multiple
filters are defined we get multiple feature maps. A
convolution layer is usually connected to a max-pooling
layer, which produces down-sampled versions of the
feature maps by taking only the maximum value in sub-
regions of a feature map.

Figure 3(a) shows an architecture with a convolu-
tion layer followed by a max-pooling layer. Here, the
input is a single time series. In this architecture, each
filter learns to identify a particular temporal feature and
activates when this is found. When a CNN is given time
sequences, the filters have been shown to identify acti-
vation peaks, periodic changes, and zero-crossing fre-
quencies in a time-window [20].

3.2 Proposed Framework

3.2.1 CNN Component In our proposed architec-
ture, the main component is a CNN which takes as in-
put a pair of time signals, corresponding to two nodes in
the network being constructed. The CNN then learns to
output a value which is the edge-weight between these
nodes. Given two time signals ti and tj , we concatenate
these to form a 2× n matrix

X =
[
ti, tj

]>
where n here is the length of the time series.

Since the dimension of the input data is constrained
and a CNN in our framework always takes a pair of time
series, we define the two kinds of convolution that can
be performed.
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Figure 3: (a) A temporal convolution followed by
downsampling; (b) Pair-wise convolution over two time
series; (c) Three different CNN architectures.

Temporal: specifically, the feature maps corre-
sponding to filters whose dimensions are 1 × w can be
obtained by

Mk
i = σ

(
(Wk ∗ t)i + bk

)
= σ

(
w−1∑
x=0

Wk
xti+x + bk

)
(3.1)

where ∗ is the convolution operator, Mk is the k-
th feature map, Wk represents the weights for the
corresponding filter, bk is the bias term, t is a time series
in the input, and w is an arbitrary filter width. This
first type of filter learns to identify the salient temporal
features on the different input time series separately.

Pair-wise: similarly, feature maps corresponding
to filters that have dimension 2×w can be obtained by

Mk
ij = σ

(
(Wk ∗X)ij + bk

)
= σ

(
1∑

x=0

w−1∑
y=0

Wk
xyXi+x,j+y + bk

)
(3.2)

where Mk, Wk, X, and bk represent the same things.
In this second kind of convolution, the filter compares
the values in both time series and squashes the two time
series down to a single dimension. In both equations, σ
is a nonlinearity, for instance it may be a tanh function.

CNNs built with these two kinds of filters can be
arbitrarily deep and can have an arbitrary number of
filters at each layer. There is only one constraint, at
some stage in the network, a pair-wise convolution has
to be applied so that the time signals are compared but
this can be specified at any layer. Also, a pair-wise
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Figure 4: Multiple CNNs integrated into one network.
All the CNN components share the same parameters.
The final layer is a classification layer.

convolution layer only appears once whereas one can
choose to have an arbitrary number of temporal convo-
lution layers. Figure 3(a) and 3(b) show illustrations of
the two kinds of convolution layers.

Three possible CNN configurations based on the
convolutions we defined are shown in Figure 3(c). Here,
it is assumed that the convolution layers are each
followed by pooling layers. In the first case, the network
extracts salient temporal features and summarizes (via
the pooling layers) the two time signals separately
before they are compared via the pair-wise convolution
layer. Initially, the network in the second example works
much like the one that was shown before. However, here
we demonstrate that additional temporal layers can be
added after a pair-wise convolution to extract features
from the time series created by joining the two original
series. In the last case, we compare the two time series
immediately before more temporal layers are used to
learn features from the joint time series.

A CNN always has as its last layer a fully-connected
layer which outputs a single value. This layer summa-
rizes all the information learned by the earlier layers and
outputs a single edge-weight value.

3.2.2 Integrating Multiple CNNs The CNN that
we have shown so far only compares two time signals. In
our setting, it is assumed that we do not have the ground
truth data on the edges of the network we are trying
to infer, thus it is not clear how supervised training
can be done. To do training on a network with m
regions, we can combine multiple CNNs in parallel, with
each one tasked to compute the edge-weight for one

of the
m(m− 1)

2
undirected edges. Figure 4 shows an

illustration of this.
The output of each of the CNNs can then be stacked

together and fed as input to a Logistic Regression (LR)
layer which predicts the label of the network. Since the
architecture is quite general, we can easily replace the

LR layer with an arbitrary set of layers. Taking the
output of the CNN layers (i.e. the edge-weights of the
inferred network) and passing this as input to an LR
layer with softmax activations can be formulated as

P(Y = i|W,x,b) = softmaxi(Wx + b)

=
eWix+bi∑
j e

Wjx+bj

(3.3)

where Wi and bi are the weights and bias terms of
the LR layer corresponding to the softmax output
associated with label i, and x is the output from the
CNN layer. The predicted value can then simply be the
label which obtained the maximal probability:

ŷ = arg max
i

P(Y = i|W,x,b)

An advantage of this architecture, where the classifier
layer is coupled with the network construction layer,
is that the error is back-propagated during training
to the earlier layers which can help the CNN learn a
discriminative measure of correlation.

An important thing to note here is that all of the
CNNs in the model share the same set of weights. This
makes sense since we are trying to learn a single edge-
weighting function. Intuitively, the network attempts to
learn a discriminative nonlinear edge-weighting function
that will allow the LR layer to better discriminate
between positive and negative samples. It is also
important to note here that even though the model can
be quite large, the number of parameters that the neural
network learns is actually relatively small since all the
CNN components share the same set of filters and, in
practice, each filter is quite small.

3.2.3 Dropout Because neuroimaging experiments
are usually quite costly to conduct, most datasets only
contain a limited number of samples. For instance, the
dataset we use in this study only has 776 samples. Even
fewer samples - a total of 77 - were used in [24]. One
thing that is problematic when attempting to learn from
a small sample is the increased chances for the model
to overfit the data. This is further compounded by the
fact that brain data is known to be quite noisy [24].

To help the model generalize, and to speed up the
training process, we introduce a parameter called the
dropout rate δ = [0, 1]. Dropout [17] is a technique used
in deep architectures which randomly excludes nodes
(and their connections) from a neural network during
training to prevent the nodes from being too reliant
on each other. This has been shown to be a powerful
regularization technique and in many cases dropout has
outperformed standard `1 and `2 regularization.



To implement dropout in our scenario, we do train-
ing on a smaller version of our original neural network
where only a fraction (1−δ) of the CNNs are present. In
other words, we try to learn an edge-weighting function
given only a fraction of the time signals. Before every
training forward-pass, we randomly select 1 − δ of the
time signals and we swap the corresponding LR weights
from the larger network to the smaller network used for
training. The weights in the CNN components of both
networks are shared so there is no need to swap those.
During testing, we simply use the large network for pre-
diction. Also, we make sure to rescale the input values
to the LR layer by 1− δ during the testing phase since
the weights that were learned were based on a model
that had access to only a fraction of the input.

3.2.4 Training via Backpropagation We use a
negative log-likelihood cost function, its formulation is

L(θ,D) =

|D|∑
i=1

log
(

P(Y = y(i)|X(i),W,b)
)

(3.4)

where θ = {W,b} is the set of model parameters, D is
our training set, and X(i) and y(i) are the set of signals
and the label, respectively, of the i-th training sample.
With regularization, the cost function can be written as

C(θ,D) = −L(θ,D) + λ1||W||1 + λ2||W||22(3.5)

where the second and third terms are the `1 and `2
regularization terms. The parameters λ1 and λ2 allow
us to specify the amount of regularization to apply.

We can then use gradient descent after each
forward-pass to update each of the parameters in our
model as follows

θj = θj − α
∂

∂θj
C(θ,D)(3.6)

where α is the learning-rate. This can be done efficiently
using backpropagation. We just have to sum the
gradients for the parameters over all the connections
where they are defined since these are shared.

4 Experiments and Results

4.1 Dataset In this study, we use the ADHD-2001

dataset from the 1000 Functional Connectomes Project,
which was made available by the Neuro Bureau2. The
dataset contains the resting-state fMRI scans of 776 sub-
jects, 491 of whom were typically developing individuals
and the rest of whom were diagnosed with ADHD.

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
2http://www.neurobureau.org/

Table 1: Classification accuracy of the various methods.

Method Accuracy
Glasso 53.04
Corr without thresholding 58.04
Corr with thresholding 58.21

GCC 64.11

The fMRIs, which were acquired in at least the
3 × 3 × 3mm space, were preprocessed using AFNI3.
During preprocessing, the first 4 echo-planar imaging
volumes were removed and slice timing correction was
applied. The scans were reoriented into the Right Poste-
rior Inferior orientation, and smoothed with a 6mm Full
Width at Half Maximum Gaussian kernel. A band-pass
filter (0.009-0.08 Hz) was also applied to remove fre-
quencies not implicated in resting state functional con-
nectivity. A set of sequences of the average activation
values averaged over voxels in 116 regions of interest
(ROI), as specified by the the Anatomical Automatic
Labeling [19] atlas, was then derived from the fMRI
scan. The time series length we used was 74. Z-score
normalization was applied to the time sequences.

We explicitly chose a dataset where the ground
truth for the underlying network is unavailable because
we wanted to work on the task of network construction
in the group-contrasting setting. In many real-world
cases, the network ground truth is unavailable but net-
work construction is still useful for discovering differ-
ences between networks from different groups.

4.2 Compared Methods We evaluated the perfor-
mance of the following methods:

• Corr: One popular technique for constructing a
brain network involves calculating the Pearson’s
correlation [2] for pairs of time signals correspond-
ing to the different regions. Since the calculated
correlation matrix is usually quite dense, threshold-
ing can be applied to remove edges that fall below
a certain threshold.

• Glasso: More recently, considerable attention has
been given towards estimating a sparse inverse
covariance matrix which represents the connections
in the brain. This technique is a step up over
other models based on simpler measures because
it only retains edges between brain regions whose
time signals are conditionally dependent on each
other. The Graphical Lasso is a good method for
this [6, 8] and it has been demonstrated to be a
suitable method in many domains.

3https://afni.nimh.nih.gov/



Table 2: Best performance of GCC under various CNN architectures. The parameter setting that achieved the
highest accuracy is shown. Here “conv” indicates the convolution filter dimension, “pool” indicate the pooling
filter dimension, and “size” means the number of filters.

GCC Architecture

layer 1 layer 2 layer 3 layer 4 layer 5 Ideal Parameters Ave.

ver. conv pool size conv pool size conv pool size conv pool size conv pool size `1 `2 α Acc.

1 (2,1) (1,1) 4 (1,7) (1,2) 3 (1,5) (1,3) 3 (1,10) (1,1) 1 – – – 0.0 0.0 0.01 64.11
2 (2,1) (1,1) 4 (1,6) (1,3) 3 (1,4) (1,2) 2 (1,3) (1,2) 2 (1,4) (1,1) 1 0.0 0.0 0.01 61.61
3 (1,9) (1,3) 2 (1,5) (1,2) 3 (1,4) (1,2) 3 (2,1) (1,1) 1 (1,3) (1,1) 1 0.0001 0.0001 0.01 62.32
4 (2,3) (1,3) 5 (1,5) (1,4) 8 (1,5) (1,1) 1 – – – – – – 0.0001 0.0 0.05 60.54
5 (2,6) (1,3) 2 (1,4) (1,2) 2 (1,3) (1,2) 2 (1,4) (1,1) 1 – – – 0.0 0.0 0.10 57.86

• GCC: This is our proposed method which uses
a CNN to learn a nonlinear discriminative edge-
weighting function. We evaluate multiple versions
of the proposed method by trying different archi-
tectures for the CNN.

Since we do not have the ground truth connectivity
information for each of the brain networks, one way to
evaluate the quality of the constructed networks is to
test the accuracy of a classifier when the constructed
networks are given as input in a classification task. For
a fair comparison, we use the same classifier (Logistic
Regression) to test each of the models. We performed
5-fold cross validation on the dataset, where both the
training and the test sets have been balanced, and
report the average accuracy of each method. We do a
grid search on the parameters of each method to identify
the parameter settings that yield the highest accuracy;
this is done using cross validation. For Glasso, this
is the regularization parameter, and for Corr it is the
threshold value. Additionally, we do a grid search on
various values for the `1 and `2 penalties for the LR.
For our model, we also do a grid search on the values
for α, δ, and the number of training epochs.

4.3 Performance Evaluation Table 1 lists the av-
erage accuracy of the different methods. It is interest-
ing, and a little surprising, to note that in this case, the
method based on Graphical Lasso only performs a little
better than random guessing. For the correlation-based
method, when thresholding (at 0.25) is applied the per-
formance increases slightly. Our proposed method, how-
ever, clearly outperforms the different baselines. It can
be noted that the performance of the different methods
are all quite low, this is due to the fact that the dataset
is particularly noisy4.

We also performed tests on various architectures
of the CNN component in our network. Table 2 lists
the performance of the top architectures we tested with
their ideal parameter settings. Each of the convolution

4http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Figure 5: Performance under various dropout settings.

layer in the models we tested is followed by a pooling
layer. From the results, it seems that doing a pair-
wise convolution on the two signals first, which is
performed by the (2, 1) convolution filter in the first
layer, before summarizing the joint time signal works
best. Also, it is interesting to note that the best
results come from models that do not perform max-
pooling after the two signals are compared. The
(2, 1) convolution layer is followed by a pooling layer
of dimension (1, 1), which is to say no pooling is
performed. Also, architectures that compared multiple
values during the pair-wise convolution – in our case, the
models with the convolution filters of dimension (2, 3)
and (2, 6) – fared worse than the others that we tested.
Their result were much lower.

4.4 Parameter Study In this sub-section, we exam-
ine the different parameters used in our proposed model.
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Figure 6: The performance of our proposed method GCC under various parameter settings.

Figure 5(a) shows the performance of our model
(with an LR layer) when doing classification on the
dataset when no regularization is applied. It is clear
to see that the model quickly overfits. In the first
10 epochs, the accuracy on the test set increases to-
gether with the accuracy on the training set which seems
to suggest that the CNN is learning a general edge-
weighting function that helps the LR layer discriminate
between positive and negative samples. However, be-
yond that, the accuracy on the test set drops and re-
mains pretty constant while the accuracy on the train-
ing set continues to increase steadily as the model starts
to become overly complex, overfitting the data. This
shows us that regularization is important to improve
the generalization power of our model.

Dropout rate: The dropout rate δ controls the
fraction of the input that is revealed to the model during
training. Figure 5(b) shows the accuracy of our top
architecture (with other parameters fixed and over a
single fold) when different dropout rates are used. As
expected, the performance is low when a very high
dropout rate is applied (90%−95%) since the data given
to the model is too limited. Similarly, the accuracy
is low when the dropout rate is too small since the
model easily overfits. Surprisingly, the performance of
the model at δ = 0.8 is consistently high and it almost
matches the performance of the model when the dropout
is at 30%. This suggests that a moderately high amount
of dropout is good and will actually help the network
generalize better. In fact, the model that achieved the
highest accuracy overall in our tests had 0.8 dropout.
An intuitive way to look at why a a large dropout
rate is good is to realize that since the weights for all
the CNN components are shared, the network does not
actually have to look at all pairs of time signal to learn
a discriminative edge-weighting function.

The dropout rate also affects the speed of the algo-
rithm. Since a fewer number of the CNN components
are active when the dropout rate is high this speeds
up the training process. Figure 6(a) shows the average
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Figure 7: The two most discriminative sub-networks
discovered from GCC + autoencoder.

time in seconds it takes for the training algorithm to
execute 100 epochs on a machine with a 2.5GHz Intel
Xeon CPU and 16GB of memory. It can be seen that
there is around a 3-time speedup in training time when
the dropout is increased from 0.2 to 0.8. In practice, we
expect the dropout rate to be relatively high since the
weights in the CNN layer are shared so learning from a
subset of the available time series is a reasonable.

Learning rate: Figure 6(b) shows the accuracy of
the top-4 architectures listed in Table 2 under differ-
ent learning rates. With the exception of the fourth
architecture, which performed best with α = 0.05, the
architectures we tested worked well with α = 0.01.

Other parameters: Figure 6(c) show the accuracy
of the various architectures when different `1 and `2
penalties are applied. In most cases, the best results are
achieved when both `1 and `2 are set to zero. This seems
to suggest that there is no longer a need to apply `1 or
`2 regularization if dropout is being applied. Finally,
we found the ideal number of epochs for training to be
typically between 25 and 80.

4.5 Case Study: Autoencoder for discrimina-
tive sub-network mining An autoencoder is a type
of fully-connected neural network which has been found
to be particularly useful as a model for feature learn-
ing [21]. It is able to perform well in this task because
it is trained to reconstruct its own input by decoding
it from a lower-dimensional encoding. Hence, it learns
to identify a low-dimensional embedding that can faith-



fully represent the original input.
In the case when there is only a single hidden layer,

the encoder part of the autoencoder takes the input
x ∈ Rn and maps it onto z ∈ Rm, where typically
m < n. Formally, the output of the encoder is

z = σ1(Wex + be)

where We is the set of weights for the encoder, and be

is the bias vector. The decoder then takes z and maps
it back to Rn. The output of the decoder is

x′ = σ2(Wdz + bd)

here Wd and bd are defined similarly, and x′ is the re-
constructed input. The model is trained to minimize the
reconstruction error, for instance the squared difference
between the original and reconstructed values.

Recently, it has been shown that an autoencoder
can discover discriminative sub-network patterns [24]
from a given brain network. When a set of links in
a brain network are given as input to an autoencoder,
each node in the first hidden layer of the autoencoder
captures a discriminative sub-network pattern from the
given input. The weights on the edges corresponding to
the first hidden layer capture the strength of each link
in the sub-network pattern.

For this test, instead of connecting our CNN out-
puts to an LR layer, we connect them to an autoencoder.
The average activations for each node in the first hidden
layer of the autoencoder can then be calculated sepa-
rately for positive and negative inputs. The absolute
difference between the averaged activations for the two
groups of input indicate the ability of a particular node
to discriminate between positive and negative samples.
This allows us to identify discriminative sub-network
patterns from the given samples. We trained our model
and selected the two neurons corresponding to the most
discriminative sub-networks. We visualized the most
significant connections from the two sub-networks us-
ing BrainNet Viewer [22]; this is shown in Figure 7.

It can be observed that the two most discriminative
brain sub-network patterns are quite different, this
shows that there is potential for the model to discover
interesting discriminative sub-network patterns from
the data which may be useful during further analysis.
We have also shown here that it is possible to combine
a brain network construction layer with a subgraph-
mining layer in a unified framework. Here the errors in
the subgraph-mining layers can be back-propagated to
help the CNNs learn a better edge-weighting function.

5 Related Work

Much research utilizing neuroimaging data has been
published in recent years. One active area of research is

the automatic diagnosis of brain disease from these im-
ages and many technique, some of which use deep learn-
ing, have been proposed. Plant et al. proposed tech-
niques that use Support Vector Machines, Bayes classi-
fiers, and Voting Feature Intervals for the prediction of
patients with Alzheimer’s disease [16]. More recently,
a number of papers have been published which used
deep learning models [3, 13]. In [3], a CNN that learns
a low-dimensional manifold of the original neuroimage
was employed to improve the accuracy of Alzheimer’s
diagnosis. The method in [13] proposed a deep learn-
ing model that predicted missing multi-modal informa-
tion to generate more features to aid in classification.
For instance, given a patient’s MRI data, the proposed
model attempted to predict the corresponding PET pat-
terns. However, all of the above-mentioned techniques
only considered the raw neuroimaging data and analysis
was not performed on a brain network of the data.

Another body of work focuses on functional connec-
tivity modeling which constructs a brain network where
the weight of edges capture the covarying pattern of the
signals associated with the brain regions [2, 7, 8, 15, 23].
The earlier works [2] use simpler measures like correla-
tion to build the brain network while, more recently, the
focus has been to learn a sparse network representation
of the brain. One method that does the latter is [23]
which uses the Graphical Lasso method to learn a sparse
inverse covariance matrix which has the nice property
guaranteeing that non-zero entries in the matrix will
be between variables that are conditionally dependent.
The only assumption is that the observations are drawn
from a multivariate Gaussian distribution. The major-
ity of the work in this area, however, assume that func-
tional relation between brain regions can be captured by
linear measures. In our framework, we attempt to learn
a nonlinear function using a deep learning approach.

Deep learning models have been used to predict
the link between two brain regions given the signal
corresponding to these regions. A notable example can
be found in [20]. One assumption, however, of the model
in [20] is that the ground truth labels for each edge in
the network is known and the problem is thus reduced
to a supervised link prediction problem. This is not a
realistic assumption to make since we do not have the
capability to exhaustively map the functional (and even
neuronal) connections of the brain in most cases. In
contrast, in this work we only assume that the actual
label of the brain network is known (e.g. whether the
data belongs to an Alzheimer’s patient or not).

Recently, there has also been a growing body of
work whose focus is on mining brain networks [4, 9]. In
[4], for instance, a deep learning architecture was de-
signed that uses multiple side-view information in guid-



ing the model in selecting discriminative subnetwork
features from a brain network. One difference between
their work and ours is their use of side-view informa-
tion, which may not always be available. The interested
reader is referred to [9] for a survey of the field.

6 Conclusion

In this paper, we studied the problem of learning a non-
linear edge-weighting function for network construction
of time series data in a group-contrasting setting. The
model uses components based on CNNs which are con-
structed with two different kinds of convolution. Exper-
iments on a real-world dataset show the effectiveness of
the approach. We also demonstrate the extensibility of
our proposed method by testing a variation of it that
has an autoencoder component which was able to iden-
tify discriminative sub-network patterns from the data.
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