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ABSTRACT
Attention-based image classification has gained increasing popu-
larity in recent years. State-of-the-art methods for attention-based
classification typically require a large training set and operate un-
der the assumption that the label of an image depends solely on
a single object (i.e., region of interest) in the image. However, in
many real-world applications (e.g., medical imaging), it is very ex-
pensive to collect a large training set. Moreover, the label of each
image is usually determined jointly by multiple regions of interest
(ROIs). Fortunately, for such applications, it is often possible to
collect the locations of the ROIs in each training image. In this
paper, we study the problem of guided multi-attention classifica-
tion, the goal of which is to achieve high accuracy under the dual
constraints of (1) small sample size, and (2) multiple ROIs for each
image. We propose a model, called Guided Attention Recurrent
Network (GARN), for multi-attention classification. Different from
existing attention-based methods, GARN utilizes guidance infor-
mation regarding multiple ROIs thus allowing it to work well even
when sample size is small. Empirical studies on three different vi-
sual tasks show that our guided attention approach can effectively
boost model performance for multi-attention image classification.
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1 INTRODUCTION
Image classification has been intensively studied in recent years
in the machine learning community. Many recent work focus on
designing deep neural networks, such as Convolutional Neural Net-
works (CNN), and these have achieved great success on various
image datasets. Conventional deep learning methods usually focus
on images with relatively “low resolutions” at the level of thousands
of pixels (e.g., 28 × 28, 256 × 256, and 512 × 512) [13, 18, 19]. How-
ever, many real-world applications (e.g., medical imaging) usually
involve images of much higher resolutions. For example, functional
Magnetic Resonance Imaging (fMRI) scans usually have millions
of voxels, e.g., 512 × 256 × 384 in terms of height, width and depth.
Training deep learning models (e.g., CNN) on such images will incur
huge computational costs, which grow at least linearly with respect
to the number of pixels.

To achieve sublinear computational costs, many attention-based
classification techniques (especially hard attention methods) have
been proposed [3, 19]. For example, Recurrent Attention Model
(RAM) [19] is an attention-based model, trained using reinforce-
ment learning (RL), which maintains a constant computational cost
w.r.t. the number of image pixels for image classification. RAM
moves its visual attention sensor on the input image and takes
a fixed number of glimpses of the image at each step. RAM has
demonstrated superior performance on high-resolution image clas-
sification tasks, making a strong case for the use of attention-based
methods under this setting.

In this paper, we mainly focus on the multi-attention classifica-
tion problem, where each image involves multiple objects, i.e., re-
gions of interest (ROIs). The label of an image is determined jointly
by multiple ROIs through complex relationships. For example, in
brain network classification, each fMRI scan contains multiple brain
regions whose relationships with each other may be affected by a
neurological disease. In order to predict whether a brain network is
normal or abnormal, we need to examine the pairwise relationships
between different brain regions. If we focus on just a single brain
region, we may not have enough information to correctly predict
the brain network’s label. Many other visual recognition tasks also
involve multiple ROIs, as illustrated in Figure 1.

Current work on attention-based models largely assume that a
large-scale training set (e.g., millions of images) is available, making
it possible to learn ROI locations automatically. However, in many
applications like medical imaging, only a small number of training
images are available. Such applications raise two unique challenges
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Figure 1: An example of the guided multi-attention classification problem. Each image contains two written digits (ROIs) at varying locations.
The label of the image is determined by the sum of the two digits, e.g., the label 10 = (9+1). The locations of the digits are provided as guidance
to the system in the small training set, but are not available during inference. An attention-based model moves its visual sensor (controlled
by a policy function) over the image and extracts patches (glimpses) to predict the image label.

for attention-based models: (1) It is usually hard to learn the lo-
cations of the ROIs directly from the data. (2) Even if the models
manage to find the ROIs given the small number of samples, the
models can easily overfit, as demonstrated in Figure 2.

One of our key insights is that by learning the locations of the
ROIs in addition to the content inside each ROI, an attention-based
model can achieve higher accuracy even with small-scale training
set. Fortunately, in many applications with a small number of train-
ing samples, it is usually possible for human experts to provide
the locations of the ROIs, e.g., locations of brain regions. In this
paper, we studied a new problem called guided multi-attention clas-
sification, as shown in Figure 1. The goal of guided multi-attention
classification is to train an attention-based model on a small-scale
dataset by utilizing the guidance, i.e., the locations of ROIs in each
image, to avoid overfitting.

Despite its value and significance, the guided multi-attention
classification has not been studied in this context so far. The key
research challenges are as follows:
Guidance of Attention: One key problem is how to learn a good
policy using the guidance information (i.e., ROIs’ locations). Such
guidance is only available during training which requires careful
design to ensure that the model still performs well without it at
inference time. Moreover, there can be a large number of possible
trajectories covering these ROIs in each training image.
Limited number of samples: Conventional attention-based mod-
els usually require a large dataset to train the attention mechanism.
With small datasets, the attention-based models can easily overfit
by using the locations of ROIs instead of the contents in each re-
gion to build a classification model. As shown in Figure 2, to avoid
overfitting, the classifier of the attention-based model should avoid
using the low-resolution glimpse, i.e., containing the ROI locations,
but instead focus on the high-resolution glimpse, i.e., containing
the content of each ROI. On the other hand, the “locator” network
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Figure 2: The unique challenge of attention-based classification
with only a small number of training samples. A classifier will over-
fit if it learns to use the locations instead of the contents of ROIs.
To prevent overfitting, a classifier should avoid “memorizing” loca-
tions in a low-resolution glimpse and focus on the high-resolution
glimpse. Meanwhile, a “locator” network should utilize the low-
resolution glimpse to determine where to move the sensor next.

which determines where the sensor should move next, should use
the low-resolution glimpse instead.

In this paper, we propose a model, called Guided Attention Recur-
rent Network (GARN), for the multi-attention classification prob-
lem. Different from existing attention-based methods (see Table 1),
GARN utilizes the guidance information for multiple ROIs in each
image and works well with small training datasets. We designed a
new reward mechanism to utilize both the given ROI locations and
the label from each training image. We proposed a novel attention
model consisting of two separate RNNs that are trained simultane-
ously. Empirical studies on three different visual tasks demonstrate
that our guided attention approach can effectively boost model
performance for multi-attention image classification.
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Table 1: How GARN differs from other attention-based methods. GARN settings are highlighted in red.

Related Work Base Learner Supervised Attention # ROIs Size of Image Size of Training Set

Goodfellow et al. [11] CNN No Multiple Small Large
Mnih et al. [19] RAM No Single Large Large

Ba et al. [3] RAM No Multiple Large Large
This Paper (GARN) RAM Yes Multiple Large Small

2 PROBLEM FORMULATION
In this section, we formally define the multi-attention classification
problem. We are given a small set of N training samples D =

{(Ii ,Ri ,yi )}
N
i=1. Here, Ii ∈ R

W ×H×C denotes the i-th image with
dimensionsW ×H ×C and label yi ∈ L. Furthermore, L represents
the label space, i.e., {0, 1} for binary classification, and {1, · · · ,Nc }

for multi-class classification, where Nc is the number of categories.
Ri =

{
ℓi j

}ni
j=1 is a set of locations of the ROIs in image Ii . Here

ℓi j = (xi j ,yi j ) ∈ R
2, where 0 ≤ xi j ≤W and 0 ≤ yi j ≤ H , indicates

the center of the j-th ROI in the i-th image. The label yi is only
determined by the objects/contents within these ROIs.
Region of Interest (ROI): In the multi-attention classification
problem, each ROI is a part of the image that contains information
pertinent to the label of the image. For instance, in an fMRI image
of the human brain, each ROI is one of the brain regions related to
a certain neurological disease.

The goal of multi-attention classification is to learn a model
f : RW ×H×C 7→ L. Specifically, we are interested in learning an
attention-based model, which interacts with a test image I that
iteratively extracts useful information from a test image through
multiple steps. In each step, the attention model obtains a glimpse,
i.e., patch,Xt of the image I around a queried location. The attention-
based model contains a policy function for visual attention π (ht ) =
(xt+1,yt+1). Here, ht represents the hidden state of the model at the
t-th step of interaction with the image while (xt+1,yt+1) represents
the location where the attention mechanism wants to obtain the
next glimpse, at step t + 1, on the test image I.

In this paper, we focus on studying the guided multi-attention
classification problem, which has the following properties: (1) train-
ing set size (i.e., |D|) is small; (2) image size is large; (3) the class
label of each image is related to multiple ROIs – for instance, the
sum (label) of multiple digits (ROIs) in an image, or the correlation
(label) between the activities of different brain regions (ROIs) in an
fMRI scan; and (4) ground-truth locations of ROIs are only provided
for a small training set.

3 OUR PROPOSED METHOD: GARN
3.1 RAM Background
Our proposed approach is inspired by the RAMmodel introduced by
Mnih et al. [19]. In RAM, an RL agent interacts with an input image
through a sequence of steps. At each step, guided by attention, the
agent takes a small patch (or glimpse) of a certain part of the image.
The model then updates its internal state with the information
provided by the observed glimpse and uses this to decide the next
location to focus its attention on. After several steps, the model
makes a prediction on the label of the image. Overall, RAM consists

of a glimpse network, a core network, a location network, and an
action network.
• Glimpse network takes a sensor-provided glimpse, Xt , of the
input image at time t and encodes it into a “retina-like” glimpse
representation, xt .
• Core network is a recurrent neural network. It obtains a new
internal state by taking the glimpse representation and combining
this with its current internal state. The internal state is a hidden
representation which encodes the history of interactions between
the agent and the input image.
• Location network takes the internal state at time t and outputs
a location, ℓt , which is where the sensor will be deployed at the
next step. Each location, ℓt , is assigned a corresponding task-based
reward.
• Action network takes the internal state at time t as input and
generates an action at . When RAM is applied to image classification,
only the final action, which is used to predict the image label, is
utilized. The action earns a reward of 1 if the prediction is correct,
otherwise reward is 0.

The t-step agent’s interactions with the input image can be
denoted as a sequence S1:t = (x1, ℓ1,a1, x2, ℓ2,a2, · · · , xt ). RAM
learns a function which maps S1:t to a distribution over all possible
sensor locations and agent actions. The goal is to learn a policy
which determines where to move and what actions to take that
maximizes reward.

3.2 Dual RNN Structure
Conventional attention-based methods tend to rely on large-scale
datasets for training. However, in many real-world applications,
such as medical imaging, the number of available images can be
relatively small. For instance, the neuroimaging dataset that Zhang
et al. [25] studied had less than a hundred samples. As we illus-
trated in Figure 2, training attention-based methods on smaller
scale training data leads to some unique challenges.

Our key insight is as follows. Instead of trying to learn the loca-
tions of the various ROIs as well as the relevant content in each of
the ROIs using a single network, like conventional approaches, we
divide this process into two connected sub-processes. To make the
most of the small number of training images and to fully leverage
the power of expert-provided guidance (e.g., locations of ROIs), we
design a guided multi-attention model with two complementary
RNNs (see Figure 3). The first RNN is used to locate ROIs in the
image while the second one is used solely for classification. While
the two RNNs take patches of an image at the same position as
input, we expect them to remember different things about the input
due to a difference in their function.

We now introduce our proposed model architecture. In the sub-
sequent discussions, we will use the same notations as [19]. Let
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Figure 3: GARN overview. The proposed GARNmodel consists of two RNNs, one for locating ROIs and the other for classification. The glimpse
sensor extracts several image patches of different scales and feeds them to two glimpse networks, f RG and f CG . f RG is the glimpse network of
the RNNwhich locates ROIs while f CG belongs to the classification RNN. The glimpses fed to both f RG and f CG are from the same location given
by the network fL with a potentially different number of glimpse scales.

Linear(x) denote a linear transformationW⊤x+ b with weight ma-
trix W and bias b. On the other hand, Rect(x) = max(x, 0) denotes
the ReLU activation.

3.2.1 RNN for Locating ROI. Our RNN for locating ROIs consists
of four parts: glimpse sensor, glimpse network, core network, and
location network.
• Glimpse sensor: Given an image I, a location ℓ = (i, j) and a
glimpse scale s , the sensor extracts s square patches Pm , form =
1, · · · , s , centered at location (i, j). The side of the (m + 1)th patch
is twice that of themth patch. All s patches are then scaled to the
smallest size, concatenated, and flattened to a vector x.
• Glimpse network (f RG ): As shown in Figure 3, the glimpse net-
work is composed of 3 fully connected (FC) layers: (1) the first
FC network encodes the sensor signal x: xh = Rect (Linear (x));
(2) the second FC network encodes the location of the sensor ℓ:
ℓh = Rect(Linear(ℓ)); (3) the third FC network encodes the con-
catenation of xh and ℓh: g = Rect(Linear(xh, ℓh)). The glimpse
representation g is the output of f RG .
• Core network (f RH ): Given the glimpse representation gt and
hidden internal state ht at time step t , the core network updates
the internal state using the following rule: fH (gt , ht ) = ht+1. The
hidden state ht+1 now encodes the interaction history of the agent
up to time t . We use basic LSTM cells to form fH .
• Location network (fL): At time step t , the next location ℓt is
stochastically determined by the location network. We assume
that ℓt is drawn from a 2D Gaussian distribution. The Gaussian

distribution’s mean vector µ is outputted by the location network
fL , which is a fully connected network µt = Tanh (Linear (ht )).
The covariance matrix is assumed to be fixed and diagonal.

3.2.2 RNN for Classification. This RNN also consists of four
parts: glimpse sensor, glimpse network, core network, action net-
work.
• Glimpse sensor: It is similar to the glimpse sensor above, and
the two sensors look at the same position at each step. However,
in this paper, we use a dual-scale sensor for classification while
a triple-scale sensor is used for finding ROIs. Intuitively, this is
because the classifier only needs the higher resolution glimpses
while the “locator” RNN may benefit from the lower resolution
glimpse which covers a wider area.
• Glimpse network (f CG ): Similar to f RG , f CG is also composed
of three FC networks with similar functions. The FC network to
encode location is shared with f RG . However, it does not share
weights with f RG for the other two FC networks. This is because
the glimpse image here has 1 or 2 scales while f RG takes an image
with 3 scales.
• Core network (f CH ): The same as f RH , but their weights are not
shared. f CH combines the output of f CG at the current step with the
previous hidden state to obtain a new hidden state.
• Action network (fCF ): Takes the last hidden state hRn as input
and outputs a label prediction. The action network fCF (hn ) = ap
is a three-layer fully connected network with ReLU activations for
its hidden layers.
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3.3 Reward and Training
The interaction between our model and an image (Figure 4) can be
denoted by two sequences. The first, SR1:n =

(
xR1 , ℓ1, x

R
2 , ℓ2, · · · , x

R
n

)
,

is generated by the RNN for finding ROIs while the second, SC1:n =(
xC1 , ℓ1, x

C
2 , ℓ2, · · · , x

C
n , y

)
, is encoded by the classification RNN.

We can view this as a case of Partially Observable Markov Decision
Process [19]. Here, the true state of the environment is static but
unknown.

The RNN for classification is trained using cross-entropy loss
which is commonly used in supervised learning. Here we mainly
discuss the training of the second RNN. We use θ to denote the
parameters of the RNN (i.e., f RG , f RH and fL). The goal is to learn a
policy π (ℓi |SR1:i−1;θ ) that maximizes the expectation of reward:

J (θ ) = Ep(SR1:n ;θ )

[ n∑
i=1

rℓi |SR1:i−1

]
(1)

3.3.1 Reward. We denote rℓi |SR1:i−1 as the reward for the gener-
ated location at the i-th step. Originally, in [19], all rewards rℓi |S1:i
are set to 1 if the classification is correct, otherwise a uniform re-
ward of 0 is given. However, such assumptions can be problematic
when training with only a small number of images, e.g., the model
can get high reward by overfitting the training sample without see-
ing the true ROIs. To mitigate such problem, we designed a reward
function based on the ground truth ROI locations:
1.Construct twomixture Gaussian distributions P1 and P2, of which
the mean vectors correspond to the locations in fL and the ground
truth locations of ROIs, respectively. The standard deviations are
hyperparameters, and we used 0.2 by default.
2. The reward in the Equation (1) is the negative of the Kullback-
Leibler divergence between P1 and P2, which is commonly used for
estimating the difference between two distributions.

Dkl (P1 | |P2) =
∑
i
p1(i) ln

P1(i)

P2(i)
(2)

Table 2: Summary of experimental datasets.

Characteristic
Task Comparing Adding Brain network

two digits two digits classification

Dataset size 2k-20k 2k-20k 2k-8k
Feature size 80 × 80 80 × 80 91 × 91 × 10

Number of classes 2 19 2
Ratio of the dominant class 0.5 0.09 0.5

Number of ROIs 2 2 4

When P1 is exactly the same as P2, the KL divergence is 0. Hence,
the closer the locations of the glimpses are to the actual ROIs, the
higher the reward.

3.3.2 Gradient Calculation. We use REINFORCE algorithm [23]
to maximize J [19]. The gradient of J can be approximately by:

∇θ J =
1
m

m∑
j=1

n∑
i=1

∇θ log
(
π
(
ℓ
j
i |S

j
1:i−1;θ

))
r j (3)

wherem denotes the number of episodes and n denotes the total
number of steps.

4 EXPERIMENTS
To evaluate our proposed method, GARN, we first conducted ex-
periments on two variants of the MNIST dataset, similar to [3]. We
then tested on real-world fMRI data with synthetic regions and
labels. More details about each dataset can be found in Table 2.

4.1 Compared Methods
• Fully Connected Neural Network (FC): We compare with a
fully connected neural network with two hidden layers. The first
hidden layer of the FC is composed by 100 neurons, and the second
layer by 50. A final classification layer with the appropriate number
of outputs is attached at the end.
• Convolutional Neural Network (CNN): We designed a CNN
that consists of two convolutional layers. Each convolutional layer
performs convolution with ReLU activations followed by average
pooling. We then connect this to an FC network with an architec-
ture that is the same as described above.The convolutional layers
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(b) Adding two digits (Task 2)
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Figure 5: Performance of multi-attention classification on three different tasks. Our proposed guided attention recurrent network (GARN)
achieves up to 30% higher accuracy with a small number of training samples, compared to other baseline models. As the number of training
samples increases, our GARN model still outperforms others by 5%.

have 128 and 256 neurons, respectively. The filter sizes for convolu-
tion and pooling are 5 × 5 and 2 × 2, respectively.
•Recurrent AttentionModel (RAM):We built a recurrent atten-
tion model based on [19] with a sensor crop size of 20×20 and three
glimpse scales. In the glimpse network, we use two fully connected
networks which each has 128 neurons to encode the cropped image
as well as the location vector. Finally, a third FC network with 256
neurons is used to encode the glimpse representation. We use a
256-cell LSTM as our core network. The location network has two
layers: the hidden layer has 128 neurons, and an output layer with 2
neurons (using tanh activations) indicating the location coordinates.
The action network (classifier) is a fully connected network whose
architecture is identical to FC described above.
• Recurrent Attention Model with Hints (HRAM): To demon-
strate the usefulness of guidance information, particularly when
training with a small dataset, and also for a fair comparison, we
implemented a variant of RAM with hints (i.e., guidance informa-
tion). Architecture-wise, HRAM is identical to RAM. We trained
HRAM with the locations of the ROIs with the standard deviation
for calculating KL divergence at 0.2.
• Guided Attention Recurrent Network (GARN): This is our
proposed model which consists of two RNNs. The RNN for locating
ROIs consists of a glimpse network, a core network, and a location
network. The RNN for classification consists of another glimpse
network, another core network, and an action network (i.e., classi-
fier). Each RNN has the same architecture as their counterpart in
the baseline RAM. But the RNN for classification only uses one or
two glimpse scales, instead of three, in its glimpse network f CG .

4.2 Performance Evaluation
We evaluate the performance of GARN and the other methods on
three different classification tasks: comparing two digits, adding two
digits, and brain network classification. We introduce each task in
more detail in the subsequent discussion. However, before we do
so we would first like to highlight two important findings in our
performance evaluation:
Importance of Guidance Information: We see in Figures 5a-5c
that, across all three tasks, the methods with guidance information
(GARN and HRAM) perform substantially better than others when
the number of training samples is small. When the number of
training samples start to increase, the other methods close the

gap in terms of performance but guidance-based methods are still
superior.
Importance of Separating Functions: Here, we see in Figures 5a
and 5b that when we have sufficient training samples, RAM catches
up to HRAM. However, we find that across all three tasks GARN
still performs the best. This hints at the importance of using two
separate networks that each focus on one of the two important
functions: locating ROIs and classification.

4.2.1 Task 1: Comparing Two Digits. In this task, we constructed
a new dataset based on the MNIST dataset. For each sample, we
randomly selected two MNIST images and embedded them into
a black background of size 80 × 80. We randomly sampled two
locations around the coordinates (16, 16) and (64, 64) for embedding
these two digits. These locations were deliberately chosen to be
far-apart in order to force the attention-based methods to learn a
policy that has to move for longer distances. We assigned the label
0 to a sample if the digit on the lower right region is larger than
the one on the upper left region; otherwise, the label is set to 1.

Figure 5a compares the test accuracies of our proposed GARN
and the four baseline models. When there are only 2k training sam-
ples, GARN achieves 6% higher accuracy than the best performing
baseline HRAM – RAM modified with additional guidance informa-
tion. This highlights the importance of designing separate RNNs for
locating ROIs location and classification. In addition, the improved
test accuracy of HRAM over RAM, especially for smaller training
datasets, highlights the importance of using ROIs’ locations during
training, whenever possible.

4.2.2 Task 2: Adding Two Digits. Next we evaluated our pro-
posed model on determining the sum of two digits embedded in an
image. We used the same training images from Task 1 and labeled
each sample with one out of 19 possible classes. This task is inher-
ently more difficult than the first task due to the larger number of
classes and the fact that images with the same label can look very
different, e.g., an image consisting of 1 and 9 and an image of 2 and
8 both have the same label.

In Figure 5b, we demonstrate that GARN outperforms all base-
lines for training datasets with size ranging from 2k to 20k samples.
Interestingly, when there are only 2k training samples, all baselines
but HRAM perform poorly – similar to random guessing. HRAM
increases the test accuracy by 30%, again indicating the usefulness
of providing guidance information in settings when we only have
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limited data. Lastly, GARN achieves more than 70% test accuracy
even with 2k training samples and gradually increases its accuracy
to 90% with 20k training samples. Our results indicate that GARN
is effective in avoiding overfitting even for relatively complex tasks,
with very small number of training samples.

4.2.3 Task 3: Brain Network Classification in fMRI. Lastly, we
studied the performance of GARN on a brain network classification
problem that reflects settings in the real-world. At a high level,
this classification task aims to determine whether a human subject
has a certain brain disorder (e.g., concussion, bipolar disorder or
Alzheimer disease) from fMRI data. An fMRI sample is a 4D image.
Essentially, it is a series of 3D brain images captured over time.
From a given fMRI sample, we can construct a weighted graph
called a functional brain network with nodes in the graph denoting
regions and time-series correlations between regions being the
weighted edges. Such correlations are calculated from associated
time sequences and reflect the functional interactions between
brain regions [7]. In this work, we used regions in the Default Mode
Network (DMN), one of the most prominent function networks
1. We designed a classification taks which requires understanding
of the relationships between different regions in DMN. Figure 6
summarizes the steps in constructing the dataset.

In more details, we constructed a synthetic brain network dataset
from real-world fRMI data with 31 samples following these steps:

(1) We normalize the brain shape of all subjects by aligning
them to the MNI152 standard brain template 2. This allows
us to align all the regions from different fMRI images and
helps us identify brain ROIs.

(2) For each raw fMRI image, we carefully select six regions of
the DMN. These regions are: left/right posterior cingulate
gyrus, left/right angular gyrus, and left/right Medial frontal
gyrus [22]. We further combine the regions that are visually
close to each other, e.g., the left/right posterior cingulate
gyrus, and the left/right Medial frontal gyrus.

(3) To ensure all four DMN regions are included, we extracted a
3D slice with shape = [width = 91, height = 91, time length
= 10] at the position z = 51 from each fMRI image. This
gives us a total of 31 fMRI images which we used as a basis
to construct a larger synthetic dataset. We used two com-
plementary approaches (Figure 6-2), i.e., associating each
fMRI image with randomly generated time sequences and
changing the DMN locations by randomly scaling each fMRI
image.

(4) To determine the label for each new fMRI image, we first
built a simple brain network that is a complete graph of four
DMN locations. We then calculated the Pearson correlation
between each pair of DMN locations based on their time se-
quences. An fMRI image is labeled as “normal” if all pairwise
correlations are higher than 0.6, otherwise it is labeled as
“abnormal”.

We can see from Figure 5c that our proposed GARN significantly
outperforms all baselines by up to 2%-20% accuracy, even with a
small number of training samples. HRAM achieves about 8% higher

1https://en.wikipedia.org/wiki/Default_mode_network
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

accuracy compared to RAM, suggesting the usefulness of utilizing
ROIs locations during training. Lastly, neither the CNN nor the FC
models work well with small training dataset.

4.3 Discussion on Parameters
We evaluated two important hyperparamaters, i.e., the number of
glimpses and the number of sensor scales.

The number of glimpses represents how many chances we give
themodel to move the sensor around. More glimpses equals a longer
sensor trajectory which typically corresponds to a higher likelihood
of gathering more information from the image. In Figure 7, we
compared the test accuracies of models given different numbers
of glimpses. For tasks one and two which only contain two ROIs,
we set the glimpse number to be four and eight, respectively. For
task three, we set the glimpse number to be five, ten, and twenty,
respectively. The choices of glimpse numbers are based on the
number of ROIs to increase the likelihood of capturing ROIs with
stochastically generated locations. In Figure 7a and Figure 7b, we
can see that GARN achieves higher accuracies with eight glimpses
than four glimpses. The accuracy gap decreases as the training
samples increases. This is likely because the four-glimpse agent has
fewer chances of hitting all the ROIs. Figure 7c shows the impact
of different number of glimpses on brain classification task. Given
that there are four ROIs in the Default Mode Network, the minimal
required number of glimpses is higher than the first two tasks.
Having access to more training samples can alleviate the need for
more glimpses per sample, as indicated by the shrinking accuracy
gaps between ten and twenty glimpses at 8k training samples. Our
results suggest that our GARN can effectively avoids overfitting on
smaller datasets.

Next we discuss the impact of the number of sensor scales on
test accuracy. Recall that our GARN uses two glimpse networks, f RG
and f CG , to locate ROIs and for classification. Each glimpse network
can be configured with a different number of sensor scales for each
glimpse. We used three scales for f RG , similar to the original RAM.
We vary the number of sensor scales from one to three for f CG
which is the agent for classification as demonstrated in Figure 8a.

In Figure 8b and 8c, we compared the test accuracies for different
number of sensor scales. Our results show that for both tasks, using
fewer scales under smaller training samples achieve higher test
accuracies. This suggests that using more and larger scales may
lead to overfitting especially when the training datasets are small.
One potential reason is that larger scale contains information, e.g.,
black background, that is not useful for classification. However,
such information can be useful for locating ROIs. This suggests
that it is useful to separately configure the number of scales for
locating ROIs and classification, as we did in GARN by designing
two separate RNNs.

5 RELATEDWORK
To the best of our knowledge, this work is the first to address the
problem of guided multi-attention classification.
Image classification and object recognition: Image classifica-
tion has become a widely studied topic. Over the past decade, deep
neural networks such as CNNs have achieved significant improve-
ment in image classification accuracy [13]. However, these CNNs

https://en.wikipedia.org/wiki/Default_mode_network
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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Figure 7: Performance of GARN with different number of glimpses. The number of glimpses heavily depends on the number of ROIs. More
glimpses help avoid overfitting, but the benefits decrease as the number of training samples increase.
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Figure 8: Performance of GARN with different number of sensor scales. Having smaller number of scales for the classification RNN helps to
avoid overfitting with fewer training samples. This also indicates the need for designing two seperate RNNs in multi-attention classification
problem.

often incur a disproportionately high computation cost to detect a
small object in a large image. A number of works [1, 10, 11] have
attempted to address this problem of high computational cost, but
in a non end-to-end way. Others [2, 8, 9], on the other hand, have
formulated the task of object detection as a decision task, similar
to our work.
Classification on fMRI data: The task of classifying fMRI data
can be formulated as a special case of multi-object image classifica-
tion. Most recent work analyzing fMRI study one or more of the
following related sub-tasks: brain region detection [17, 26], brain
network discovery, and classification [6, 28]. However, neuroimag-
ing datasets are inherently quite challenging to work with due to

their high noise, their high dimensionality, and small sample sizes.
It was not until very recently that researchers started to propose
end-to-end solutions, such as CNN based methods [20] which solve
both brain network discovery and classification coherently [15]. Dif-
ferent from existing work, we use a guided attention-based model
which can locate brain regions and do classification as well, without
requiring additional information such as time sequences from ROIs
as input [15].
Attention model: Recently, researchers have begun to explore
attention-based deep learning models for visual tasks [3, 9, 14, 21]
and natural language processing [4, 24]. Specifically, Mnih et al. [19]
proposed the recurrent attention model (RAM) to tackle the issue
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of high computation complexity when dealing with large images.
Other work based on RAM have also tackled the problems of multi-
object recognition and depth-based person identification [3, 12].
Most recently, Tariang [5] proposed a recurrent attention model
to classify natural images and computer generated images. The
structure and training method are similar with [3, 19], while it uses
a CNN to implement its glimpse network. Meanwhile, Zhao [27]
combined a recurrent convolutional network with recurrent atten-
tion for pedestrian attribute recognition, which uses a soft attention
mechanism instead of the hard attention used by RAM. Another
recent study leveraging the soft attention mechanism is [30], which
uses recurrent attention residual modules to refine the feature maps
learned by convolutional layers. In the areas of person identification,
sequence generation, image generation, some other works [16, 29]
are also utilize both attentional processing as well as RNNs.

6 CONCLUSION
In this paper, we first formulated the Guided Multi-Attention Clas-
sification problem. We then proposed the use of a guided attention
recurrent network (GARN) to solve the problem. Our proposed
method addresses the challenges of training with only a small num-
ber of samples by effectively leveraging the guidance information in
the form of ROI locations. Specifically, GARN learns to identify the
locations of ROIs and to perform classifications using two separate
RNNs.We performed extensive evaluations on threemulti-attention
classification tasks. Our results across all three tasks demonstrated
that GARN outperforms all baseline models. In particular, when
the training set size is limited, we observed up to a 30% increase in
performance.
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