
Graph Classification using Structural Attention
John Boaz Lee

Worcester Polytechnic Institute
Massachusetts, USA

jtlee@wpi.edu

Ryan Rossi
Adobe Research
California, USA

rrossi@adobe.com

Xiangnan Kong
Worcester Polytechnic Institute

Massachusetts, USA
xkong@wpi.edu

ABSTRACT

Graph classification is a problemwith practical applications inmany
different domains. To solve this problem, one usually calculates
certain graph statistics (i.e., graph features) that help discriminate
between graphs of different classes. When calculating such features,
most existing approaches process the entire graph. In a graphlet-
based approach, for instance, the entire graph is processed to get the
total count of different graphlets or subgraphs. In many real-world
applications, however, graphs can be noisy with discriminative pat-
terns confined to certain regions in the graph only. In this work,
we study the problem of attention-based graph classification. The
use of attention allows us to focus on small but informative parts
of the graph, avoiding noise in the rest of the graph. We present a
novel RNN model, called the Graph Attention Model (GAM), that
processes only a portion of the graph by adaptively selecting a
sequence of “informative” nodes. The model is equipped with an ex-
ternal memory component which allows it to integrate information
gathered from different parts of the graph. Experimental results
on multiple real-world datasets show that the proposed method
is competitive against various well-known methods in the graph
classification task even though these methods have access to the
entire graph whereas we limit our method to only a portion of the
graph.

CCS CONCEPTS

• Information systems→Datamining; •Mathematics of com-

puting → Graph algorithms; • Theory of computation → Rein-
forcement learning;

KEYWORDS

Attentional processing, graph mining, reinforcement learning, deep
learning
ACM Reference Format:

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph Classification
using Structural Attention. In Proceedings of ACM KDD conference (KDD’18).
ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

Graph classification, or the problem of identifying the class labels
of graphs in a dataset, is an important problem with practical ap-
plications in a diverse set of fields. Data from bioinformatics [4],

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’18, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

0.1

0.1

D D

DD

CC B A

active
D D

DD

CC E F

inactive

D D

CC B A

D D

D D

CC B A

D D

0.8 0.1

D D

CC B A

D D

0.9

C B A
predicted

label

!∗

Figure 1: Attention-based graph classification. Given a start-

ing nodev∗ and a budgetT = 3 nodes to select for graph clas-

sification, attention is used to guide the walk towards more

informative parts of the graph.

chemoinformatics [10], social network analysis [1], urban comput-
ing [2], and cyber-security [5] can all be naturally represented as
labeled graphs. In chemoinformatics, for instance, molecules can be
represented as graphs where nodes correspond to atoms, and edges
signify the presence of chemical bonds between pairs of atoms. The
task then is to predict the class label of each graph – for instance,
the anti-cancer activity, solubility, or toxicity of a molecule.

To solve this problem, the usual strategy is to calculate certain
graph statistics (i.e., graph features) on the entire graph. A popular
technique is the graphlet kernel [25] which counts the occurrences
of various graphlets (i.e., subgraphs) on a graph. Graphs that share
a lot of common graphlets are then considered similar. The Morgan
algorithm [22] is another method for calculating graph features. It
uses an iterative process which updates each node’s attribute vector
by hashing a concatenation of all the attributes in the node’s local
neighborhood. The graph feature is then computed from the final
attributes of all the nodes in the graph. In more recent years, the
focus has shifted towards learning data-driven graph features [10,
18] which is to say task-relevant features are learned automatically
from the graphs in a given dataset. Since we can expect graphs
belonging to a particular class to exhibit some common pattern
that is not typically observed among the other graphs, we can then
use the calculated graph features for classification.

However, graphs in the real-world can be both large and noisy
[20, 34]; this introduces some challenges when the entire graph has
to be processed to calculate graph features. When a graph is noisy,
the significant subgraph patterns can be sparse and confined only to
small neighborhoods within the graph. For instance, when studying
the interaction networks of complex diseases, researchers have
identified specific subnetworks that are associated with the disease
[7]. In this case, processing the entire graph can inadvertently cause

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

KDD’18, August 2018, London, UK John Boaz Lee, Ryan Rossi, and Xiangnan Kong

D D

CC B A

D D

D D

CC B A

D D

D D

CC B A

D D

(a) attention-based classification [17]

D D

CC B A

D D

5

(b) graph classification [10, 25]

(c) attention-based graph classification

Figure 2: Comparison of different classification problems.

Traditional glimpse-based attentional processing in (a)

takes several glimpses of the input before classification. On

the other hand, graph classification without attention in (b)

takes the entire input graph and uses it for classification.

The problemwe study in (c) uses attention to process a small

but relevant part of the graph for classification while obey-

ing graph structure.

noise to be introduced into the calculated feature as most of the
graph does not contain anything informative. Furthermore, it is
usually costly if not infeasible, to compute representations of large
real-world graphs [23].

To address the issues mentioned above, we study the problem of
attention-based graph classification which we formally define below.
We begin by giving the definition of traditional graph classification.
Definition 1. Graph Classification: Given a set of attributed graphs
D = {(G1, ℓ1), (G2, ℓ2), · · · , (Gn , ℓn)}, the goal is to learn a function
f : G→ L, whereG is the input space of graphs and L is the set of
graph labels. Here each graph Gi = (AGi ,DGi) is comprised of an
adjacencymatrixAGi ∈ {0, 1}

Ni×Ni , and an attribute matrixDGi ∈
RNi×D , where Ni is the number of nodes in the i-th graph and D
is the number of attributes. Each graph also has a corresponding
label ℓi .

Definition 2. Attention-based Graph Classification: Given a set
of attributed graphs D = {(G1, ℓ1), (G2, ℓ2), · · · , (Gn , ℓn)}, and a
budget T , the goal is to learn a composite function f ′ ◦ д : G→ L.
Here, Gi , G, and L still retain the same definition while ◦ is the
function composition operator. The function д : G→ RT×D selects
T nodes and returns their corresponding attributes. In other words,
given a graph Gi , we are limited to selecting T nodes and can only
use the corresponding information (i.e, node attributes) to make a
prediction on the graph label.

We summarize the two main challenges of this problem as fol-
lows: (1) graph structure is important; and (2) graphs can be noisy
with task-relevant patterns confined to small regions within the
graph. A useful model has to take these two factors into considera-
tion which makes the problem challenging. For instance, we cannot
just choose a random set of nodes since this does not capture the
graph’s structure and is unlikely to yield task-relevant information.

To address these challenges, we propose a solution based on
attention-guided walks. Instead of choosing T random nodes, we
use a walk on the graph to sample T nodes. A walk allows us to
capture the structure of the traversed region. On the other hand,
an attention mechanism is used to guide the walk. This allows us

to focus on relevant parts of the graph while ignoring the noise in
the rest of the graph which results in graph features that provide
better predictive performance. Furthermore, our attention-guided
walk is designed to rely only on local information from the graph
which has the added benefit of keeping computation costs (space
in particular, in this case) low since there is no need to load the
entire graph into memory. We provide an illustration of this in
Figure 1. On the other hand, Figure 2 highlights the difference
between attention-based graph classification and the two related
problems of (1) graph classification and (2) attentional processing
on non-graph data.

Inspired by the recent success of Recurrent Neural Networks
(RNN) with attention on vision-related tasks [17], we propose an
RNN model with a built-in attention mechanism for graphs. The
attention mechanism in our model is trained using reinforcement
learning to actively select informative regions in the graph to pro-
cess. We also introduce a memory component which allows the
model to integrate information gathered from different parts of a
graph. The main contributions of our paper can be summarized as
follows:

(1) We propose to study the problem of attention-based graph
classification and introduce GAM, a general framework that
uses attentional processing to learn data-driven features for
graphs. The model uses attention to selectively process infor-
mative portions of the graph. To the best of our knowledge,
this is the first model that uses attention to learn representa-
tions for general attributed graphs.

(2) We introduce a model that does not require global informa-
tion of the graph. Instead, the attentionmechanism processes
only a node’s local neighborhood. In addition, the model is
easily parallelizable.

(3) We show through empirical evaluation on multiple real-
world datasets that the model can outperform various estab-
lished baselines.

(4) We demonstrate the effectiveness of attention by comparing
against modified baselines that utilize random attention.

The rest of the paper is organized as follows. We start by review-
ing related work in the next section. We then present the proposed
method in section 3. Experimental setup and discussion of results
are provided in section 4. Finally, we conclude the paper and give
some directions for future work in the last section.

2 RELATEDWORK

Many different techniques have been proposed to solve the graph
classification problem. One popular approach is to use a graph
kernel to measure similarity between different graphs [19]. This
similarity can be measured by considering various structural prop-
erties like the shortest paths between nodes [3], the occurrence of
certain graphlets or subgraphs [25], and even the structure of the
graph at different scales [14].

Recently, several new methods which generalize over previ-
ous approaches, have been introduced. These methods use a deep
learning framework to learn data-driven representations of graphs
[10, 18, 33]. In [10], a method is introduced that generalizes the
Weisfeiler-Lehman (WL) algorithm by learning to encode only rel-
evant features from a node’s neighborhood during each iteration.

Graph Classification using Structural Attention KDD’18, August 2018, London, UK

Interestingly, [18] proposes a method that processes a section of
the input graph using a convolutional neural network. However,
for this to work for graphs of arbitrary sizes the method relies on a
labeling step that ranks all the nodes in the graph which means it
still processes the entire graph initially.

One thing common among all the above-mentioned approaches
is that the entire graph is processed to compute the graph’s final
representation. In contrast, we study a model that only processes a
portion of the graph with attention used to determine the parts of
the graph to focus on.

Recent studies have shown that deep learning frameworks with
attentional processing can performwell on a variety of tasks. In [16],
attention was used to allow the model to attend to a subset of the
source words in the language translation task. Meanwhile, [32] used
attention to help a model fix its gaze on salient objects for image
captioning and [17] applied attention to the image classification
task. The work in [6], on the other hand, used attention to guide a
CNN to focus on relevant objects for the visual question answering
task. Although attentional processing has been applied successfully
to many problems, most of the existing work lie in the computer
vision or natural language processing domains. In this work, we
focus on graphs, which have less well-behaved structure when
compared to images/videos (grids) or text (sequences). Because of
this, traditional models for attention cannot be directly applied to
graph data.

A few work have also begun to investigate the use of attention
on graphs [8, 27]. Choi et al. studied a model which used attentional
processing on medical ontology graphs [8]. However, our work is
significantly different from that of [8] as their model is specifically
designed for medical ontologies and work only on directed acyclic
graphs (DAG) while we explore an attention mechanism on more
general (un)directed attributed graphs. In another work, attentional
processing was used to solve the problem of node representation
learning [27] which aims to learn embeddings for nodes in a graph.
This is quite different from the task of learning representations for
graphs – and not nodes – in a dataset which is the problem studied
here. To the best of our knowledge, this is the first work that utilizes
attention to learn data-driven features for graphs.

Finally, we also experiment with an architecture that has a simple
external memory to allow multiple agents to integrate information
from various parts of the graph. In a sense, this is conceptually
similar to the memory networks of [21, 26].

3 GRAPH ATTENTION MODEL

To simplify the discussion, we begin by describing a basic attention
model. In subsequent discussion, we introduce a variant with more
refined attention and external memory.

In this work, we formulate the problem of applying attention
on graph-structured data as a decision process of a goal-directed
agent traversing along an input attributed graph. The agent starts
at a random node on the graph and, at each time step, moves to a
neighboring node. The information available to the agent is limited
to the node it chooses to explore. Since global information about the
graph is unavailable, the agent needs to integrate information over
time to help it determine the parts of the graph to explore further.

The ultimate goal of the agent is to collect enough information that
will allow it to make a correct prediction on the label of the graph.

The agent will only explore a small portion of the graph with
the attention mechanism guiding it in its exploration. If the graph
is large, we can also initialize multiple agents at different nodes
in the graph and run them in parallel. Deploying multiple agents
can help improve the performance of the model since each agent
can explore a different part of the graph with attention helping to
steer each agent’s exploration along the local neighborhood. This
allows us to use the model on large graphs that may be difficult or
impossible to load into memory.

3.1 Proposed Model

Our proposed model has an RNN at its core, as shown in Figure 3.
At each time step, the core network processes new information
from the step that was just taken and integrates this into its internal
representation together with information retained from previous
steps. It uses this information to predict the label of the input graph
and to decide which areas of the graph to prioritize for further
exploration in the next time step.

Step module: At each time step, the step module considers the
one-hop neighborhood of the current node ct−1 and picks a neigh-
bor ct to take a step towards. The step module is biased towards
picking neighbors whose types or labels have higher rankings in
the rank vector rt−1. The attribute vector of the chosen node is then
extracted and fed together with rt−1 to produce the step represen-
tation st = fs (dct , rt−1;θs) (see Figure 3a). The step representation
st is the new information available to the core LSTM network at
each time step. The step algorithm is summarized in Algorithm 1.

Node type: The way we label or assign types to nodes allows us
to bias the exploration towards certain nodes at different stages of
the exploration. Depending on the application, the node type can
be a simple discrete value (e.g., type of atom in a molecular graph)
or it can be something more elaborate like a category derived from
log-binning several attributes that capture the local structure of
the node. We give a simple example of the latter case. Suppose
the agent wants to visit one of two Carbon nodes adjacent to it, it
cannot differentiate between the nodes under the first node typing
strategy. In the second method, the node type may be calculated
based on the statistics encoded in the k-hop neighborhood of each
node and this allows us to differentiate between the two Carbon
nodes. Using more complex node typing strategies may, however,
increase the number of node types substantially and one may have
to look into reinforcement learning strategies that work well when
the discrete action space is large [9].

History: The core LSTM network maintains a history vector
which is a summary of all the information obtained by the agent
in its exploration of the graph thus far. At each time step, as new
information becomes available in the form of st from the step we
just took, the history vector is updated via ht = fh (st , ht−1;θh).
This allows the core network to integrate information over time.

We use an LSTM in our architecture as it is superior to simple
RNNs in capturing long-range dependencies. Even though LSTMs
have a more sophisticated memory model when compared to simple
RNNs, it has been shown that they still have trouble remembering
information that was inputted too far in the past [29]. Because of

KDD’18, August 2018, London, UK John Boaz Lee, Ryan Rossi, and Xiangnan Kong

rt-1

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

st

"ℎ(. ; 'ℎ)ht-1

"*(. ; '*) "+(. ; '+)

,-t rt

ht

rt

[1,0,0,1,1]

[1,1,0,1,0]

[0,0,0,1,0]

[1,0,0,0,1] = dct

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

st+1

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

,-t+1 rt+1

ht+1

(a) step network

(b) GAM architecture

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]
[0,1,0,0,0]

! = {A!, D!}

rt-1

Step
Module

dct

'#1

'#2

st

'#3

ct-1

ct-1

[0,0,0,0,1]

ct

Figure 3: (a) Step network: Given a labeled graph G (composed of the adjacency matrix AG , and the attribute matrix DG), a
current node ct−1, and a stochastic rank vector rt−1, the step module takes a step from the current node ct−1 to one of its

neighbors ct , prioritizing those whose type (i.e., node label) have higher rank in rt−1. The attribute vector of ct , dct , is extracted
and mapped to a hidden space using the linear layer parameterized by θ2s . Similarly, rt−1 is mapped using another linear

layer parameterized by θ1s . Information from these two sources are then combined using a linear layer parameterized by θ3s
to produce st , or the step embedding vector which represents information captured from the current step we took. (b) GAM

architecture: We use an RNN as the core component of the model; in particular, we use the Long Short-Term Memory (LSTM)

variant [11]. At each time step, the core network fh (.;θh) takes the step embedding st and the internal representation of the

model’s history from the previous step ht−1 as input, and produces the new history vector ht . The history vector ht can be

thought of as a representation or summary of the information we’ve aggregated from our exploration of the graph thus far.

The rank network fr (.;θr) uses this to decide which types of nodes are more “interesting" and should thus be prioritized in

future exploration. Likewise, the classification network fc (.;θc) uses ht to make a prediction on the graph label.

this, on large graphs, it may be better to deploy multiple agents
with each agent exploring a relatively small neighborhood rather
than having one agent traverse the graph for a long period. To
integrate information, we can augment the architecture with a
shared external memory [26]. Additionally, a network conditioned
on the current history vector can be trained to allow the model
to selectively save information to memory. This will allow the
model to store information that is useful for graph classification
(e.g., discriminative subgraphs).

Actions: Given the new history vector that captures what the
agent has seen so far, the agent performs two actions at each time
step. First, it predicts the label of the input graph l̂t = argmax

i
P(y =

i | fc (ht ;θc)) from the softmax output of the classification network
conditioned on ht . Second, it uses the rank network to generate
the rank vector rt = fr (ht ;θr) that will help “steer" exploration in
the next step by ranking the importance of different types of nodes.

Primarily, the rank vector’s job is to encode the importance of
different types of nodes. However, we can augment it to include
additional actions such as one for deciding when to stop further
exploration if the agent is confident it has enough information to
classify the graph correctly. Another possible action is the one that
allows the model to transfer its current internal information to a
memory component.

1: procedure Step(rt−1 ∈ RR ,A ∈ NN×N ,D ∈ RN×D , ct−1)
2: a← A[ct−1, :]
3: T← τ (D) ▷ T ∈ RN×R is a matrix of one-hot

row vectors indicating node types; we assume that type can be
derived from node attributes.

4: p← (T rt−1)⊤

5: p← p ⊙ a
6: d ←

∑
i pi

7: p← p ⊙ 1
d

8: ct ∼Multinomial(π = p) ▷ Sample a neighbor from
multinomial distribution parameterized by p.

9: return D[ct , :], ct
10: end procedure

Algorithm 1: Procedure to pick a neighbor to move to. The

algorithm is biased towards picking neighbors whose types

have higher ranks in rt−1. Here, ⊙ represents element-wise

multiplication and ▷ denotes the start of a comment.

Reward: In the typical reinforcement learning setting, the agent
receives new information xt+1 from the environment and a reward
signal rt+1 after taking an action at each time step t . The goal of
the agent is to maximize the reward it receives which is usually
quite sparse and delayed: R =

∑T
t=1 rt . In our setting, xt+1 = dct+1

Graph Classification using Structural Attention KDD’18, August 2018, London, UK

and the reward is given only at the end, where rT = 1 if the model
classified the graph correctly and rT = −1 otherwise. Hence R = rT .

Under this formulation, we have what can be considered a Par-
tially ObservableMarkov Decision Process (POMDP). In this setting,
we only obtain partial information about the graph or our envi-
ronment through our interactions with it at each time step. As in
[17], our goal is to learn a policy π ((rt , l̂t |s1:t ;θ)) with parameters
θ that maps the sequence of our past interactions with the envi-
ronment s1:t = x1, r1, l̂1, · · · , xt−1, rt−1, l̂t−1, xt to a distribution
over actions for the current time step t . In other words, given the
history of past interactions as summarized in the history vector ht ,
the classification network fc (.;θc) and the rank network fr (.;θr) –
or our policy networks – learn to generate actions that maximize
reward.

3.2 Training

Together, the core LSTM network, the step network, and the rank
network work in conjunction with each other to form the policy
of the agent. We learn the parameters θ = {θh ,θs ,θr } of these
networks to maximize the total reward the agent can expect to
obtain. Since each specific policy for the agent induces a distribution
over the possible interaction sequences s1:T , we want to train our
policy to maximize the reward under the generated distribution:
J (θ) = EP (s1:T ;θ)[R].

It is a non-trivial task to maximize J exactly as we are dealing
with a very large, and possibly infinite, number of possible interac-
tion sequences. However, since we frame the problem as a POMDP,
we are able to obtain a sample approximation of the gradient of J
by using the technique introduced by [31] as shown in [17]. This is
given by

∇θ J ≈
1
M

M∑
i=1

T−1∑
t=1
∇θ logπ (rit [τ (c

i
t+1)]|s

i
1:t ;θ)γ

T−tRi (1)

where the si ’s are the interaction sequences from running the agent
under the current policy for i = 1, · · · ,M episodes, γ ∈ (0, 1] is
a discount factor that allows us to attribute more significance to
actions performed closer to time T or when the prediction was
made, and τ (cit+1) is a function that maps a node to its type. The
intuition behind equation 1, which is also known as the REINFORCE
rule, is as follows. We run the agent with the current policy to
obtain samples of interaction sequences. The parameters θ are
then adjusted to increase the log-probability or rank of the type of
nodes that were frequently selected during episodes that resulted
in a correct prediction. Training the policy this way allows us to
increase the chance that the agent will choose to take a step towards
a particular type of node the next time it finds itself in a similar
state. To compute ∇θ logπ (rit [τ (c

i
t+1)]|s

i
1:t ;θ), we simply compute

the gradient of our network at each time step, this can be done
using standard backpropagation [30]. Note that we only adjust the
log-probabilities for t = 1, · · · ,T − 1 since the rank vector rt in the
last step is no longer used.

Since the gradient estimate in Equation 1 may exhibit high vari-
ance, one may choose to estimate ∇θ J via

1
M

M∑
i=1

T−1∑
t=1
∇θ logπ (rit [τ (c

i
t+1)]|s

i
1:t ;θ)(γ

T−tRi − bit) (2)

instead. This provides us with an estimate that is equal in expecta-
tion to the original formulation but with possibly lower variance
[17]. Here bit = fb (s

i
1:t ;θb) = fb (h

i
t ;θb) captures the cumulative re-

ward we can expect to receive for a state hit . The term (γ
T−tRi −bit),

or the advantage of choosing an action, allows us to increase the
log-probability of actions that resulted in a much larger expected
cumulative reward and to decrease the log-probability of actions
that resulted in the reverse. We can train the parameter θb of fb by
reducing the mean squared error of Ri − bit .

Finally, we use cross entropy loss to train the classification net-
work fc (.;θc) by maximizing logπ (lT |s1:T ;θc), where lT is the true
label of the input graph G. As in [17], we use this hybrid loss formu-
lation where the rank network fr is trained at each time step using
REINFORCE and the classification network fc and the baseline net-
work fb are trained using the classical approach from supervised
learning.

3.3 Space Complexity

Let △G be the max node degree for graph G andD be the dimension
of the node attribute vector. Since the agent only moves to one of
the current node’s neighbors at each time step, we only need to
store a △G × D matrix containing the attributes of neighboring
nodes at any given time. After taking a step to a new node, the
attribute matrix for the new set of neighbors can be fetched from
disk. Ignoring the space needed to store r, s, h, c , and the parameters
of our model, which are constant and negligible, our model has a
space complexity of O(△GD) which is quite small in practice.

3.4 Initialization

For each new instance, we initialize the start vertex c0 by selecting a
random node in the input graph and the rank vector r0 is initialized
to the uniform distribution.

3.5 Attention with Memory

When predicting the label of an input graph, one may choose to
average the softmax output of several runs by initializing multiple
agents at different starting locations in the graph. In this case, we
can view each agent as one classifier in an ensemble where we
predict by voting. While averaging the predictions of several agents
can certainly improve classification performance, our model is still
at a disadvantage against methods that integrate information from
the entire graph. This is because each agent makes a prediction
independently, using only the information it gathered from a local
area within the graph.

To remedy this, we introduce a variant of ourmodel with a shared
external memory component that can store information from mul-
tiple agents. In this architecture, each agent i for i = 1, · · · ,n stores
information in a local memory component pi , these are then com-
bined to form the shared memorym that the classification network
uses to make a single prediction. In the simplest case, pi = hiT ,
which means we use the final history vector as each agent’s local
memory. However, not all parts of an agent’s walk through the
graph may yield equally important information. To allow the model
to retain only information useful to the task we set pi =

∑T
j=1 u

i
jh

i
j ,

where theuij ’s are the softmaxed output of fu (hij ;θu)which decides

KDD’18, August 2018, London, UK John Boaz Lee, Ryan Rossi, and Xiangnan Kong

u1 u2 uT

r0

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s1

"ℎ(. ; 'ℎ)h0

"*(. ; '*) "+(. ; '+)

r1

h1

r1

[1,0,0,1,1]

[1,1,0,1,0]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s2

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

r2

h2

rT-1

[1,1,0,1,0]

[1,0,0,1,1]

[1,0,0,0,1]

[0,0,0,1,0]

[0,0,0,0,1]
[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

sT

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

rT

hT

…

,

p1

agent 1

…

m

,

"-(. ; '-)

./!

c0

c1
cT-1

softmax

average

c0 c1

cT-1

u1 u2 uT

r0

[1,1,0,1,0]

[1,0,0,1,1]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s1

"ℎ(. ; 'ℎ)h0

"*(. ; '*) "+(. ; '+)

r1

h1

r1

[1,0,0,1,1]

[1,1,0,1,0]

[0,0,0,1,0]

[1,0,0,0,1]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

s2

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

r2

h2

rT-1

[1,1,0,1,0]

[1,0,0,1,1]

[1,0,0,0,1]

[0,0,0,1,0]

[0,0,0,0,1]

[0,1,0,0,0]

! = {A!, D!}

"#(. ; '#)

sT

"ℎ(. ; 'ℎ)

"*(. ; '*) "+(. ; '+)

rT

hT

…

,

pn

agent n

softmax

average

Figure 4: The attentionmodel withmemory. Multiple agents can be initialized (in parallel) at different starting nodes allowing

each agent to explore a different part of the graph. We use weighted pooling to combine each agent’s history vectors, giving

us an agent’s local memory. The outputs of fu (.;θu), or the ui ’s, are normalized using softmax and multiplied with their corre-

sponding history vectors. The intuition here is to train fu (.;θu) to assign more importance to useful information. To integrate

information, we average the local memories of all the agents to get the shared memory:m = 1
n
∑n
i=1 pi – which is used to make

a prediction on the graph label. For brevity, we omit the superscripts for h, u, r, s, and c.

how useful a particular “piece of memory" is. In other words, we do
weighted pooling to obtain our local memory. This can be viewed
as another form of attention. Finally, to integrate information from
multiple agents, we simply set m = 1

n
∑n
i=1 pi . This modification

allows us to integrate information from various regions in the
graph and is especially helpful if the graph is large and we only
take a small number of steps T . Note that each agent’s exploration
is still guided by the attention mechanism proposed earlier. The
architecture of attention with memory is shown in Figure 4.

Various modifications can be made to this architecture. For in-
stance, we can choose to condition the output of the rank network
on the local memory or even the shared external memory. Addi-
tional actions can also be introduced to allow the model to modify
or rewrite the shared memory; also, it isn’t difficult to imagine
including an action that allows the agent to stop exploration if it
has already gained enough information to make a prediction. In
this work, however, we deliberately choose to test on the simplest
version because our goal is to show the usefulness of attention.

4 EXPERIMENTS

4.1 Motivating Example

Before we consider the details of our main experimental setup, we
introduce a simple motivating example that shows how attention
can be used to guide an agent towards more relevant regions in
the graph. For this toy example, we generated a small dataset of
random graphs. We embedded several patterns or subgraphs in the
generated graphs, two of which were the 3-paths A − B −C − D,
and A − B − E − D. The former pattern was embedded primarily
onto positive samples while the latter was included in negative
samples. In Figure 5, we show the output of the rank network,

over time, when it is given the history vector h1 capturing the
initial step onto the node of type B. It is interesting to note that,
initially, the rank network assigns more or less equal importance
to the five types of nodes. However, after some time, it learns
to prioritize the nodes of types C or E. This guarantees that the
agent will prioritize exploration in the right direction, giving the
model enough information to classify the graphs correctly in a
small number of steps.

4.2 Experimental Setup

4.2.1 Data. We evaluated our proposed method on the binary
classification task using five real-world graph datasets: HIV, NCI-
1, NCI-33, NCI-83, and NCI-123 [15]. These datasets have been
made publicly available by the National Cancer Institute (NCI)1
[33]. Since the molecular structures in the datasets were encoded
using the SMILES format [28], we used the RDKit2 package to
convert each string into its corresponding graph. We used the
same package to extract the following information for each node
(i.e. atom) to use as node attributes: atom element, node degree,
total number of attached hydrogens, the implicit valence, and atom
aromaticity. Atom element was used to label or assign types to
the nodes. The graph class labels indicate the anti-cancer property
(active or negative) of each molecule. The datasets are all highly
imbalanced with far more negative samples than positive ones. We
follow the methodology in previous work [15, 33] and randomly
extract a balanced subset (500) for each dataset.

4.2.2 Compared Methods. In order to demonstrate the effec-
tiveness of our proposed approach, we compare it against several

1https://www.cancer.gov/
2http://www.rdkit.org/

Graph Classification using Structural Attention KDD’18, August 2018, London, UK

Table 1: Summary of experimental results: “average accuracy ± SD (rank)". The “ave. rank" column shows the average rank of

each method. The lower the average rank, the better the overall performance of the method.

method

dataset ave.

rankHIV NCI-1 NCI-33 NCI-83 NCI-123
Agg-Attr 69.58 ± 0.03 (4) 64.79 ± 0.04 (4) 61.25 ± 0.03 (6) 58.75 ± 0.05 (6) 60.00 ± 0.02 (6) 5.2
Agg-WL 69.37 ± 0.03 (6) 62.71 ± 0.04 (6) 67.08 ± 0.04 (5) 60.62 ± 0.02 (4) 62.08 ± 0.03 (5) 5.2
Kernel-SP 69.58 ± 0.04 (4) 65.83 ± 0.05 (3) 71.46 ± 0.03 (1) 60.42 ± 0.04 (5) 62.92 ± 0.07 (4) 3.4
Kernel-Gr 71.88 ± 0.05 (3) 67.71 ± 0.06 (1) 69.17 ± 0.03 (3) 66.04 ± 0.03 (3) 65.21 ± 0.05 (2) 2.4
GAM 74.79 ± 0.02 (2) 64.17 ± 0.05 (5) 67.29 ± 0.02 (4) 67.71 ± 0.03 (2) 64.79 ± 0.02 (3) 3.2
GAM-mem 78.54 ± 0.04 (1) 67.71 ± 0.04 (1) 69.58 ± 0.02 (2) 70.42 ± 0.03 (1) 67.08 ± 0.03 (1) 1.2

A B C D
positive sub-pattern

A B E D
negative sub-pattern

Figure 5: Rank values, over time, in the generated rank vec-

tor r1 when the rank network is given h1 encoding informa-

tion from an initial step onto node B. Higher rank value sig-

nifies more importance.

baseline methods, all of which utilize the entire graph for feature
extraction. To the best of our knowledge, this is the first work on
attention with graphs so we compare against baselines that observe
the entire graph. We would like to emphasize that our proposed
model (GAM) uses attention to explore only a portion of the input
graph, this puts our model at a disadvantage since it only has partial
observability. Since the main goal is to show the viability of using
attention, we limit the architecture of our tested models to simple
ones (more detail below). The compared methods are summarized
below.

• Agg-Attr: Given an attributed graph, one simple way to con-
struct a feature vector is to get the component-wise average
of the attribute vectors of all the nodes in the graph.
• Agg-WL: The first approach captures information from node
attributes. However, it completely ignores the graph’s struc-
tural information. The second method uses the Weisfeiler-
Lehman (WL) algorithm [24] to calculate new node attributes
that capture the local neighborhood of each node. The al-
gorithm works by iteratively assigning a new attribute to
each node by computing a hash of the attributes of neigh-
boring nodes. We simply average the new attributes after
running the WL algorithm to use as feature vector used for
prediction.

• Kernel-SP: As in [33], we compare against the shortest path
(SP) kernel which measures the similarity of a pair of graphs
by comparing the distance of the shortest paths between
nodes in the graphs. Since we use attributed graphs, we
label the nodes in the graph by concatenating the categorical
attributes.
• Kernel-Gr: As in [33], we also compare against the graphlet
kernel which measures graph similarity by counting the
number of different graphlets. Here, we evaluate against the
3-graphlet kernel and nodes are labeled as above.
• GAM: Our proposed approach which uses attention to steer
the walk of an agent on an input graph.
• GAM-mem: Proposed approachwith externalmemory. Note
that given a budget ofT for GAM , GAM-mem with n agents
has access to same amount of information if each agent is
constrained to take T

n steps.

We used a logistic regression (LR) classifier with the first two
baselines. To reduce overfitting, we applied ℓ1 and ℓ2 regularization
and used a grid search over {0.01, 0.1, 1.0} to select the ideal regu-
larization penalty. Furthermore, we also did a grid search over the
number of iterations for the WL algorithm, we tested over {2, 3, 4}.
For a fair comparison, we limited the classification network for
both our methods to a single softmax layer to make it equivalent
to LR. We also limited the number of hidden layers in all other
networks of our model to a single layer, whenever possible. For the
graph-kernel based approaches, we used an SVM classifier using
the precomputed kernel generated by each approach. Here, we did
a grid search over C = {0.01, 0.1, 1.0}. We used a vector in R200 for
Agg-WL and limited the size of the LSTM history vector to this size
as well. In particular, we tried size = {156, 200}. We also tried the
following sizes for the first and second hidden layers, respectively,
of the step network: (128, 164), and (64, 128).

Since we did not find any noticeable change in the performance
of GAM when increasing the following parameters, we fixed their
values. We set the number of steps T = 12 and the number of
samples M = 20. M is also the number of agents we run on each
graph for prediction. For GAM-mem, we did a grid search over
T = {12, 25}, and M = {5, 10}. We use the Adam algorithm for
optimization [13] and fix the initial and final learning rates to 10−3
and 10−6, respectively. We also did not use discounted reward as
there was no noticeable gain, setting γ = 1. Finally, we limit the
training of our methods to 200 epochs and applied early stopping
using a validation set.

KDD’18, August 2018, London, UK John Boaz Lee, Ryan Rossi, and Xiangnan Kong

Table 2: Performance of the baselines when we restrict their setting to that of GAMwhere they are given 20 randomly selected

partial snapshots of each graph and have to predict by voting. The column “full" indicates the performance when the entire

graph is seen and “partial" shows the performancewhen only parts of the graph is seen. “Diff." is the difference in performance,

a ↓means that performance deteriorated when only partial information is available and ↑ shows increase in performance.

method

dataset

HIV NCI-1 NCI-33 NCI-83 NCI-123
full partial diff. full partial diff. full partial diff. full partial diff. full partial diff.

Agg-Attr 69.58 64.17 05.41 (↓) 64.79 59.58 05.21 (↓) 61.25 58.54 02.71 (↓) 58.75 62.71 03.96 (↑) 60.00 57.50 02.50 (↓)
Agg-WL 69.37 56.04 13.33 (↓) 62.71 51.46 11.25 (↓) 67.08 49.79 17.29 (↓) 60.62 51.46 09.16 (↓) 62.08 52.29 09.79 (↓)
GAM - 74.79 - - 64.17 - - 67.29 - - 67.71 - - 64.79 -

4.3 Classification Results

Table 1 shows the average classification accuracy, over 5-fold cross-
validation, of the compared methods. From the results, we can see
that our proposed model is always among the top-2 in terms of per-
formance on all tested datasets. In particular, the attention model
with memory performs the best on four of the five datasets and
comes in at second on the fifth dataset (NCI-33). In every single
case, GAM-mem outperforms GAM which shows that adding an
external memory to integrate information from various locations
is beneficial. However, we find that GAM still performs respectably
against the compared baselines and in fact comes in second on two
of the tested datasets. We also find that GAM outperforms Agg-Attr
and Agg-WL in almost every single case, which is remarkable since
each agent in GAM only has access to a portion of the graph while
the latter two have access to the entire graph. In our experiments,
we find that the first two baselines perform the worst, almost al-
ways performing the worst on all the datasets. The kernel-based
approaches are better, with the graphlet-based approach being supe-
rior. It is able to outperform GAM slightly. However, GAM-mem is
consistently the best performer on all the datasets that were tested.

4.3.1 Applying Random Attention. Our experiments show that
the attention model is competitive against baselines that observe
the entire graph while our model is limited to seeing a portion of
the graph. To demonstrate the effectiveness of attention further, we
ran another experiment where we restrict the first two baselines
to the setting of GAM. It is a straightforward modification since
the methods also use the graph attribute vectors. However, the
baselines do not have a concept of attention, so we use random
attention where we sample 20 subgraphs from each graph using
a random-walk of length 12. This limits the information available
to the baselines to that which is available to GAM since we fixed
M = 20 and T = 12.

Table 2 shows the result of the baselines when they only observe
a random portion of each graph. It is clear that the performance de-
teriorates for both methods, with Agg-WL showing a more marked
difference in performance. This is with the exception of Agg-Attr
on NCI-83. In fact, we can see that the performance of Agg-WL
drops so drastically that it performs almost no better than random
guessing on four of the five datasets (NCI-1, NCI-33, NCI-83, and
NCI-123). This shows that attention can help us examine parts of
the graph that are relevant.

4.4 Parameter Study

We study the effect of varying step sizes T on performance of
both GAM and GAM-mem. For each of the 5 datasets, we fixed

Figure 6: Average runtime when agents are run in parallel

versus sequentially.Herewe show the runtime for doing pre-

diction on a mini-batch of 32 graphs with T = 100.

all other parameters to the ones that yielded the best results and
varied T = {1, 3, · · · , 15, 18}. In both cases, accuracy increased as
we increased the number of steps with T = 12 giving fairly good
performance on all datasets on both methods. Surprisingly, we
found that both models already performed relatively well when
T ≥ 3, in some cases being only 5-6% worse than the best accuracy.
This may be because molecular graphs are fairly small in size. We
found that GAM-mem, in general, benefits more from an increase
in the size of T which may be due to the fact that we are using
weighted pooling of the history vectors so the model can support
longer walks.

4.5 Parallel Execution of Agents

One advantage of our model is the ability to execute multiple agents
in parallel during prediction time. This is particularly useful when
the graph is large and we need multiple agents to explore different
parts of the graph. For instance, in the task of malware classification
on function-call graphs the graphs have been known to contain up
to ~37,000 nodes [12]. Also, recall that in the proposed model the
agents are not required to have access to the entire graph. In fact,
at any time-point t , the model only needs access the current node
ct and its neighbors along with their attributes. If the graph is too
large to load into memory, this information can be accessed on the
fly (e.g., from a database).

Since each agent in GAM can make an independent prediction,
the agents can be run in parallel. The only step that needs to be

Graph Classification using Structural Attention KDD’18, August 2018, London, UK

done in the end is to average the predictions of all the agents. For
GAM-mem, since the history vectors of all the agents are combined,
we wait for all the agents to take T steps before we combine the
information. However, the individual agents in GAM-mem can
still explore the graph in parallel. Figure 6 shows the difference
in runtime of our method when multiple agents are executed in
parallel versus in a single process. The experiments are conducted
on a Linux machine with 48 CPU cores and 160GB of RAM. We see
here that the parallelized version of GAM-mem is slightly slower.
This can be expected since each agent’s local memory needs to
be combined to form the shared memory. However, it is clear that
parallelization helps keep the runtime close to constant for both
methods as the bottleneck is in the attention-guided walk.

5 CONCLUSION

In this work, we propose to study the problem of attention-based
graph classification and introduced GAM, a general RNN-based
framework that uses attention to learn data-driven features for at-
tributed graphs. The model uses attention to process task-relevant
parts of the graph (partial observability) and has an external mem-
ory to integrate information from various parts of the graph. The
attention mechanism in our model is easily parallelizable. Empirical
results show that the method can outperform methods that observe
the entire graph.

There are a lot of interesting directions for future work. We in-
tend to study the model using more expressive node typing strate-
gies. We would also like to experiment with an extension of the
model with a more sophisticated external memory (e.g., making
memory rewritable, and using memory to condition the output
of the rank network). Finally, it would be interesting to test more
flexible architectures for LSTM like Tree-LSTMs that seem more
natural for graphs.

REFERENCES

[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predict-
ing and recommending links in social networks. In Proceedings of the Fourth
International Conference on Web Search and Web Data Mining. 635–644.

[2] Jie Bao, Tianfu He, Sijie Ruan, Yanhua Li, and Yu Zheng. 2017. Planning Bike
Lanes based on Sharing-Bikes’ Trajectories. In Proceedings of the Twenty-Second
ACM SigKDD International Conference on Knowledge Discovery and Data Mining.

[3] Karsten M. Borgwardt and Hans-Peter Kriegel. 2005. Shortest-Path Kernels on
Graphs. In Proceedings of the Fifth IEEE International Conference on Data Mining.
74–81.

[4] KarstenM. Borgwardt, Cheng SoonOng, Stefan Schonauer, S. V. N. Vishwanathan,
Alex J. Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via
graph kernels. Bioinformatics 21, 1 (2005), i47–i56.

[5] Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and
Christos Faloutsos. 2011. Polonium: Tera-Scale Graph Mining for Malware
Detection. In Proceedings of the Eleventh SIAM International Conference on Data
Mining. 131–142.

[6] Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram
Nevatia. 2015. ABC-CNN: An Attention Based Convolutional Neural Network
for Visual Question Answering. In arXiv preprint arXiv:1511.05960v2.

[7] Dong-Yeon Cho, Yoo-Ah Kim, and Teresa M. Przytycka. 2012. Chapter 5: Network
Biology Approach to Complex Diseases. PLOS Computational Biology 8 (2012),
e1002820.

[8] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, and Jimeng
Sun. 2017. GRAM: Graph-based Attention Model for Healthcare Representa-
tion Learning. In Proceedings of the Twenty-Third ACM SigKDD International
Conference on Knowledge Discovery and Data Mining. 787–795.

[9] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
In arXiv preprint arXiv:1512.07679.

[10] David K. Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P. Adams. 2015. Convolu-
tional networks on graphs for learning molecular fingerprints. In Proceedings of
the Twenty-Eight Annual Conference on Neural Information Processing Systems.
2224–2232.

[11] Felix Gers, Jurgen Schmidhuber, and Fred Cummins. 1999. Learning to forget: con-
tinual prediction with LSTM. In Proceedings of the Tenth International Conference
on Artificial Neural Networks. 850–855.

[12] Xin Hu, Tzi cker Chiueh, and Kang G. Shin. 2009. Large-scale malware indexing
using function-call graphs. In Proceedings of the Sixteenth ACM Conference on
Computer and Communications Security. 611–620.

[13] Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A method for stochastic
optimization. In Proceedings of the Third International Conference on Learning
Representations.

[14] Risi Kondor and Horace Pan. 2016. The Multiscale Laplacian Graph Kernel.
In Proceedings of the Twenty-Ninth Annual Conference on Neural Information
Processing Systems. 2982–2990.

[15] Xiangnan Kong, Wei Fang, and Philip S. Yu. 2011. Dual active feature and sample
selection for graph classification. In Proceedings of the Seventeenth ACM SigKDD
International Conference on Knowledge Discovery and Data Mining. 654–662.

[16] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
Thirteenth Conference on Empirical Methods in Natural Language Processing. 1412–
1421.

[17] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014.
Recurrent models of visual attention. In Proceedings of the Twenty-Seventh Annual
Conference on Neural Information Processing Systems. 2204–2212.

[18] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs. In Proceedings of the Thirty-Third
International Conference on Machine Learning. 2014–2023.

[19] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching Node Embeddings for Graph Similarity. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence. 2429–2435.

[20] Shirui Pan, Jia Wu, Xingquan Zhu, and Chengqi Zhang. 2015. Graph Ensemble
Boosting for Imbalanced Noisy Graph Stream Classification. IEEE Transactions
on Cybernetics 45, 5 (2015), 940–954.

[21] Aaditya Prakash, Siyuan Zhao, Sadid A. Hasan, Vivek Datla, Kathy Lee, Ashequl
Qadir, Joey Liu, and Oladimeji Farri. 2017. Condensed Memory Networks for
Clinical Diagnostic Inferencing. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence. 3274–3280.

[22] David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.
Journal of Chemical Information and Modeling 50, 5 (2010), 742–754.

[23] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2017. Estimation of graphlet
statistics. In arXiv preprint arXiv:1701.01772.

[24] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research 12 (2011), 2539–2561.

[25] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and
KarstenM. Borgwardt. 2009. Efficient graphlet kernels for large graph comparison.
In Proceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics. 488–495.

[26] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. 2015. End-
To-End memory networks. In Proceedings of the Twenty-Eight Annual Conference
on Neural Information Processing Systems. 2440–2448.

[27] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph Attention Networks. In arXiv preprint
arXiv:1710.10903v2.

[28] David Weininger. 1988. SMILES, a chemical language and information system.
Journal of Chemical Information and Modeling 28 (1988), 31–36.

[29] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory Networks. In
Proceedings of the Second International Conference on Learning Representations.

[30] Daan Wierstra, Alexander Forster, Jan Peters, and Jurgen Schmidhuber. 2007.
Solving deep memory POMDPs with recurrent policy gradients. In Proceedings of
the Seventeenth International Conference on Artificial Neural Networks. 697–706.

[31] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3 (1992), 229–256.

[32] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and
Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of
the Thirty-Second International Conference on Machine Learning. 2048–2057.

[33] Pinar Yanardag and S. V. N. Vishwanathan. 2015. Deep Graph Kernels. In Pro-
ceedings of the Twenty-First ACM SigKDD International Conference on Knowledge
Discovery and Data Mining. 1365–1374.

[34] Jingyuan Zhang, Bokai Cao, Sihong Xie, Chun-Ta Lu, Philip S. Yu, and Ann B.
Ragin. 2016. Identifying Connectivity Patterns for Brain Diseases via Multi-side-
view Guided Deep Architectures. In Proceedings of the Sixteenth SIAM Interna-
tional Conference on Data Mining. 36–44.

	Abstract
	1 Introduction
	2 Related Work
	3 Graph Attention Model
	3.1 Proposed Model
	3.2 Training
	3.3 Space Complexity
	3.4 Initialization
	3.5 Attention with Memory

	4 Experiments
	4.1 Motivating Example
	4.2 Experimental Setup
	4.3 Classification Results
	4.4 Parameter Study
	4.5 Parallel Execution of Agents

	5 Conclusion
	References

