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Abstract—Researchers have discovered, in recent years, the
advantages of modeling complex systems using heterogeneous
information networks. These networks are comprised of hetero-
geneous sets of nodes and edges that better represent the different
entities and relationships often found in the real world. Although
heterogeneous networks provide a richer semantic view of the
data, the added complexity makes it difficult to directly apply
existing techniques that work well on homogeneous networks.

In this paper, we propose a graph modification process
that alters an existing heterogeneous bibliographic network into
another network, with the purpose of highlighting the important
relations in the bibliographic network. Several importance scores,
some adopted from existing work and others defined in this work,
are then used to measure the importance of links in the modified
network. The link prediction problem is studied on the modified
network by implementing a random walk-based algorithm on
the network. The importance scores and the structure of the
modified graph are used to guide a random walker towards
relevant parts of the graph, i.e. towards nodes to which new
links will be created in the future. The different properties of the
proposed algorithm are evaluated experimentally on a real world
bibliographic network, the DBLP. Results show that the proposed
method outperforms the state-of-the-art supervised technique as
well as various approaches based on topology and node attributes.

Index Terms—heterogeneous information network, random
walk with restart, link prediction, relative importance

I. INTRODUCTION

One of the fundamental problems in network analysis is
predicting the emergence of new links. It is a problem with
practical applications in many different domains. In biology,
for instance, experimental methods for identifying protein-
protein interaction are often costly and researchers have begun
to explore in silico methods to help predict these interactions
[2], [8]. In online social networks like Facebook, value can
be added to the service by accurately recommending new
connections to users [3].

Most of the early works [1], [11] in link prediction focused
mainly on the definition of similarity measures based on
structural information encoded in the network. These kind of
link prediction methods aimed at inferring future connections
by analyzing the structural patterns of the current network. The
idea was that new links could be expected to appear between
nodes that were most similar with regard to network structure.
One of the simplest structure-based measure is the common
neighbor count. Nodes that shared a large set of common

Fig. 1. An example of a heterogeneous bibliographic network.

neighbors are deemed to be most similar.
Many methods based on supervised learning were subse-

quently introduced in the literature [3], [7]. These methods
work by learning the coefficients or weights corresponding to
selected features in the training data.

A notable example of a supervised link prediction algorithm
can be found in a recent work by Backstrom and Leskovec [3].
The algorithm in [3] learns an edge weight function such that
a random walk on the network is more likely to visit positive
training examples in the weighted graph.

Probabilistic methods that aim to build models to capture
the correlations among links have also been explored [9], [10].
A recent work studied the problem in an environment where
existing links in the network are not fully observed [10]. In
this work, the graph was modeled in a probabilistic manner.

Most of the work in link prediction [5], [6], including all the
above-mentioned ones, deal with homogeneous information
networks wherein nodes and edges are of a single type. It is
more natural, however, to model real world networks using a
heterogeneous set of objects and relationships. For example,
a co-authorship network, which is comprised of just author
nodes linked together by co-authorship relations, can be further
refined by adding papers, venues, and topics to create a
heterogeneous bibliographic network.

Fig. 1 shows an example of a heterogeneous bibliographic
network with the various relations that exist among the dif-
ferent types of nodes: (1) authors and papers are connected
by “write” and “written by” relations, (2) papers and topics
are linked by “contain” and “contained in” relations, (3) an



edge between venues and papers signify the “publish” and
“published in” relations, and (4) papers can be connected
to one another by the “cite” and “cited by” relations. It is
clear that this heterogeneous set of nodes and links provide a
semantically richer view of the data. We can now tell that the
authors Henry and Francis (from Fig. 1) both published papers
in the same venue and the former’s paper cited the latter’s
paper. This kind of information is not found intuitively in a
co-authorship network.

In a recent work [14], researchers have shown that by
considering the different relations captured by meta paths,
paths comprised of different types of nodes and links, link
prediction in a heterogeneous bibliographic network can be
improved. In this work, we modify the network to make it
more suitable for random walks - which, to some extent, is
more natural for measuring node similarity since the entire
topology is taken into account. We make sure to capture, in our
new graph, the important relations identified in the previous
work [14]. Importance measures are then defined to guide the
random walker along the graph. Our contributions are:
• A link prediction model based on random walks is

developed for heterogeneous bibliographic networks. The
random walk algorithm runs on a modified heterogeneous
bibliographic network to highlight important relations.

• We study the effect of several importance measures in
link prediction, this helps us understand the mechanisms
behind co-author relationship building.

• Experiments on the real world DBLP network demon-
strates the efficiency of the proposed method.

II. THE PROPOSED GRAPH MODIFICATION PROCESS AND
SOME DEFINITIONS

We introduce in this section the definition of a heteroge-
neous bibliographic network, our proposed graph modification
process, and the link prediction task in the context of the
modified graph.

A. Heterogeneous Bibliographic Network Based on DBLP

We base our bibliographic network on the real world
DBLP network. The DBLP bibliographic dataset, as provided
by [17], contains publication information such as paper
title, authors, venue (journal or conference), citations, and
publication date. We use the sequential topic mining algorithm
in [12] to identify popular phrases from paper titles which
we use as topics.

Our network can then be defined as a directed graph
G = 〈V,E〉, comprised of a vertex set V and an edge
set E, that has a type mapping function τ : V → T
and a relation mapping function ρ : E → R. Each node
v ∈ V can be mapped to a particular type τ(v) ∈ T ,
for T = {author, paper, venue, topic}, and each link
e ∈ E denotes a certain relation ρ(e) ∈ R, for R =
{write, written by, contain, contained in, cite, cited by, pub-
lish, published in}. Furthermore, each paper node in Vp ⊂ V
can be mapped by a function φ : Vp → N to the year it was
published. Fig. 2 shows the schema of the DBLP network.

Fig. 2. Schema of the DBLP Bibliographic Network.

B. Proposed Graph Modification Process

We now describe our proposed graph modification process.
To construct the new network, we create a graph resembling an
“attribute” graph [13]. In particular, we build upon the work in
[19], which describes a method to construct a bi-typed network
comprised of person nodes and attribute nodes. In our work,
we introduce additional types of nodes and edges that will
allow the network to better capture the important relations
present in a bibliographic network.

Given a bibliographic network G = 〈V,E〉 where V =
Va ∪ Vp ∪ Vv ∪ Vt, Va is the set of author nodes, Vp is the set
of paper nodes, Vv is the set of venue nodes, and Vt is the set of
topic nodes; we create an undirected graph G′ = 〈V ′, E′,W 〉
based on the relations found in G. Here W : E′ → R+ is a
weight mapping from the new set of edges E′ to R+.

Following [19], we create an author node in G′ correspond-
ing to each author in G and refer to these as author nodes.
We also create a node for each topic, cited paper, and venue
and call these attribute nodes. Therefore V ′ = Vauth ∪ Vattri,
where Vauth = Va is the set of author nodes and Vattri =
Vt∪Vv ∪Vc is the set of attribute nodes, Vc ⊂ Vp is the set of
papers that were cited by other papers (note that only papers
that have been cited are included as attribute nodes in Vattri).

We now define the different types of edges that are included
in the new network. These are:
1. Structural links. For two authors a, a′ ∈ Vauth, 〈a, a′〉 ∈
E′ if ∃p ∈ Vp s.t. 〈a, p〉 ∈ E and 〈a′, p〉 ∈ E. In other words,
we add an edge between two author nodes a and a′ in V ′ if
they are co-authors.
2. Attribute links. For two nodes x, y ∈ V ′, 〈x, y〉 ∈ E′ if
• x ∈ Vauth, y ∈ Vt, and ∃p ∈ Vp s.t. 〈x, p〉 ∈ E and
〈p, y〉 ∈ E.

• x ∈ Vauth, y ∈ Vv , and ∃p ∈ Vp s.t. 〈x, p〉 ∈ E and
〈p, y〉 ∈ E.

• x ∈ Vauth, y ∈ Vc, and ∃p ∈ Vp s.t. 〈x, p〉 ∈ E and
〈p, y〉 ∈ E.

That is, an author node is connected to a topic node in the
new graph if a paper authored by the corresponding author



Fig. 3. An example of the original bibliographic network is shown on the left while the modified network is shown on the right. In the new network, the
topics, conferences, and cited papers are now attribute nodes and attribute links (dashed lines) connect them to authors. The solid lines represent structural
links while the dotted lines denote trivial self-citation links - this last type of link helps connect authors to others who have cited their work and vice versa.

contained the topic. Similarly, an author node is linked to a
cited paper node (or venue node) if a paper written by the
corresponding author cited the paper (or was published in the
venue). Note that it is straightforward to treat topics found in
an author’s paper as attributes by linking the corresponding
author and topic nodes. Venues that publish an author’s work
can also be treated as the author’s attributes by linking
the corresponding author and venue nodes. However, it is
not immediately clear how we can represent paper citations
found in the original bibliographic network G in the modified
network G′. A clever way to incorporate citation information
in the modified network is to treat these as attributes, thus cited
papers are included as attribute nodes in G′; i.e. author nodes
are connected to cited paper nodes if the corresponding authors
cited the corresponding papers. To go one step further, one can
choose to create attribute nodes corresponding to papers that
have cited other papers (“citing papers”); and author nodes
are linked to the same “citing paper” node if their works were
cited together by the citing paper. We do not include this last
type of node, however, in our study.
3. Trivial self-citation links. For an author a ∈ Vauth and a
cited paper c ∈ Vc, 〈a, c〉 ∈ E′ if 〈a, c〉 ∈ E. Note that this
edge definition is redundant if ∃p ∈ Vp s.t. 〈a, p〉 ∈ E and
〈p, c〉 ∈ E meaning the author a has cited the paper c that
he has written from another paper p that he also authored.
These links connect author nodes to cited paper nodes if
the corresponding author wrote the corresponding cited paper.
Note that trivial self-citation links act like attribute links since
they connect author nodes with attribute nodes.

Fig. 3 shows an example of a bibliographic network be-
fore and after it undergoes our proposed graph modification
process. The new graph is constructed in this way to capture
the important relations between authors that contribute to co-
authorship relation building as discussed in [14]. The structural
links capture the idea that people who share co-authors should
be closer to each other in the network and are thus more
likely to co-author in the future. The attribute links help
connect authors who: (1) publish in the same venue, (2) write

about the same topics, and (3) cite the same papers, as these
factors also increase the chance of co-authorship. Finally, the
trivial self-citation links are added onto the new graph for two
reasons. They help to link an author to those that have cited his
works, and conversely, they connect the author to the authors
whose works he has cited. All these help capture the important
relations behind co-authorship link building [14].

C. Link Prediction in Modified Graph

Given the modified network G′ = 〈V ′, E′,W 〉, an author
node a ∈ Vauth, and k ∈ N, the link prediction task aims to
identify the nodes a′ ∈ Vauth that a creates structural links to
in the future. Specifically, if G′ represents the bibliographic
network at some time t, the link prediction task tries to infer
the set of authors {a′1, ..., a′k} ⊂ Vauth that a is most likely
to co-author with in some future time interval t′.

III. EDGE WEIGHTING SCHEME

A. Importance Measures

We now describe several importance measures that help
capture the concept of the importance of a node in the modified
network. These measures are used to bias the weights of links.
The first two measures discussed here are from [19]. The latter
two measures are introduced in this work.
1. Global Importance Measure. The global importance
measure of an attribute node x measures the percentage of
actual co-authors over all possible co-authors among authors
who are linked to the attribute node x.

g(x) =

∑
〈a,a′〉∈E′ ex(a, a′)(

nx
2

)
Here, nx is the degree of x, or simply the number of author
nodes linked to it. ex(a, a′) = 1 if co-authors a and a′ are
both linked to attribute x, and is zero otherwise.

We can see that this measure is helpful because it rewards
attributes that are specific while penalizing general attributes.
For instance, a general computer science conference attracts
researchers working in very different fields who do not have
much in common and are thus less inclined to co-author with



one another. On the contrary, a highly specialized conference
like ACM SIGKDD attracts authors – many of whom have co-
authored in the past – that specialize in data mining and the
chances of two authors co-authoring here should be greater.
2. Local Importance Measure. The local importance la(x)
of a node x ∈ V ′ relative to an author node a is defined as

la(x) =
∑

a′∈Nauth(a)

A(a′, x)

where Nauth(a) is the set of a’s co-authors and A(a′, x) = 1
if a′ is linked to the node x, A(a′, x) = 0 otherwise. Local
importance captures the importance of a node in the graph
relative to the author’s friends or co-authors.

The local importance measure is also important because
it looks at node importance from an author’s co-authors’
perspective. To see why this is relevant, we give an example.
An author specializing in membrane computing authors two
papers. One is published in a highly specialized conference
for natural computing where many of the authors past co-
authors have also submitted their work. The other paper is
the product of a chance encounter between the author and an
individual who specializes in AI. Their paper is published in
a conference specializing in AI. Now both conferences, being
equally specialized, happen to have the same global impor-
tance. However, the local importance for the first conference
should be greater than that of the latter since the conference
on natural computing is where most of the author’s co-authors
can also be found (revealing the “real interest” of the author).
3. Frequency Importance Measure. Aside from the first two
measures, we would also like to measure how frequent an
interaction occurs. For example, the link between two co-
authors who have co-authored twenty papers in the past should
be stronger than that between co-authors who co-authored a
single paper. The same can be said for a link to a topic that
has been mentioned multiple times in the past versus another
that was only mentioned once.

The frequency measure fa(x) of a node x ∈ V ′ relative to
an author a is

fa(x) = kfreq(a,x)

where freq(a, x) = |Pa ∩ Px|, Pa = {p ∈ Vp : 〈p, a〉 ∈ E}
is the set of paper nodes linking to author node a, and Px =
{p ∈ Vp : 〈p, x〉 ∈ E} is the set of paper nodes linking to node
x in G. For an author node a, Pa is the set of papers authored
by a. For a node x, say a cited paper, Px is then the set of
papers citing x, |Pa ∩Px| is then the number of times a cites
x. Here, we set k = 1.1 since this yielded better performance
compared to higher values; k should be in (1,∞].

Note that freq(a, x) = 0 for a cited paper x connected to
an author node a by a trivial self-citation link since a never
explicitly cited x. For this special case, we set freq(a, x) = 1.
4. Recency Importance Measure. Finally, we calculate the
importance of a link by the recency of interaction. Through this
measure, we are able to strengthen links with recent activity.
Intuitively, one is more likely to find co-authors among the
friends of someone whom one has recently worked with versus

someone with whom one has had no collaboration with for
the last twenty years. Our recency measure ra(x) for a node
x ∈ V ′ with regard to author node a is defined as follows.

ra(x) =
1

kly−rec(a,x)

We denote by ly the year of the most recently published paper
in the dataset and rec(a, x) = arg maxp∈Pa∩Px φ(p) is the
year in which the latest paper between author a and the node
x was published in the original network G. Recall that the
function φ maps a paper to the date it was published.

Note that rec(a, x) is undefined for a cited paper node x
connected to an author node a through a trivial self-citation
link. In this case, we set rec(a, x) = φ(x), which is simply
the year the paper x was published.

B. Weighting Links According to Relative Importance

We now discuss how to assign weights to the links based
on the measures defined. We start by defining the aggregate
relative importance scores of nodes linked to an author node.

Given an author node a ∈ Vauth, an attribute node x ∈
Vattri connected to a, and another author node a′ ∈ Vauth
who is a co-author of a, the relative importance score wa(·)
of a node relative to a can then be defined as follows.

wa(x) = αg(x) + βla(x) + γfa(x) + δra(x)

wa(a′) = (
α

3
+ β)la(a′) + (

α

3
+ γ)fa(a′) + (

α

3
+ δ)ra(a′)

The parameters α, β, γ, δ ∈ [0, 1] control how much a measure
contributes to the final score, α+ β + γ + δ = 1.

Note that the importance score of an attribute with regard to
an author is a combination of all four importance measures. In
other words, an attribute is important to an author a if it is (1)
linked to a subset of author nodes that have a high clustering
coefficient, (2) linked to many of a’s co-authors, (3) often
associated with a, and (4) recently associated with a.

On the other hand, the importance of a co-author a′ is only
dependent on three measures since we are only concerned with
whether a has had recent and frequent interactions with a′ and
whether a’s other co-authors are also linked to a′. Whether the
co-author a′ is a generalist or a specialist does not matter.

The normalized edge weight W (a, ·) of the edge 〈a, ·〉 from
an author node a can now be defined as follows.

W (a, x) =



λwa(x)∑
x′∈Nattri(a)

wa(x′) : if |Nattri(a)| > 0 and

|Nauth(a)| > 0;
wa(x)∑

x′∈Nattri(a)
wa(x′) : if |Nattri(a)| > 0 and

|Nauth(a)| = 0;
0 : otherwise.

W (a, a′) =



(1−λ)wa(a′)∑
â∈Nauth(a) wa(â) : if |Nauth(a)| > 0 and

|Nattri(a)| > 0;
wa(a′)∑

â∈Nauth(a) wa(â) : if |Nauth(a)| > 0 and

|Nattri(a)| = 0;
0 : otherwise.



The parameter λ controls how much we depend on a certain
type of link. Nattri(a) is the set of attribute nodes connected to
author a, while Nauth(a) is the set of author nodes connected
to a. Please note that in all the above calculations, we treat
trivial self-citation links as attribute links.

We now define the edge weight W (x, a) of a link from an
attribute node x to an author node a.

W (x, a) =
(α2 + β

2 +γ)fa(x)+(α2 + β
2 +δ)ra(x)∑

a′∈Nauth(x)(
α
2 + β

2 +γ)fa′ (x)+(α2 + β
2 +δ)ra′ (x)

for Nauth(x) is the set of author nodes connected to attribute
node x. This simply biases the weights towards authors who
are frequently and recently associated with the attribute.

Note that our edge weighting scheme biases the weights of
all edges in the modified network by using a combination of
the different importance measures. This allows us to strengthen
or weaken the meta paths between the author nodes in the
graph. In this way, we are able to bring similar authors closer
together through paths with stronger cumulative edge weights.

IV. RANDOM WALK LINK PREDICTION ALGORITHM

To perform link prediction in our context, an algorithm
based on random walks is defined on the new graph. A random
walk process is started from a single query author node, and
the stationary random walk probabilities to the other nodes on
the graph is then considered as the link relevance, which is the
likelihood of a link occurring between the author node and the
respective nodes. Since the edges in the graph were weighted,
the random walk starting from an author a is more likely to
discover nodes that are linked to a through “important” paths.

To calculate the link relevance of nodes with regard to a
particular query author a∗, we define the random walk process
on the new graph as follows

r〈t〉a = (1− c)
∑

a′∈Nauth(a)

W (a′, a)r
〈t−1〉
a′

+ (1− c)
∑

x′∈Nattri(a)

W (x′, a)r
〈t−1〉
x′ + cr〈0〉a

r〈t〉x = (1− c)
∑

a′∈Nauth(x)

W (a′, x)r
〈t−1〉
a′

where r〈t〉a is the random walk probability from author a∗ to
author a after the tth iteration, and r

〈t〉
x is the random walk

probability from a∗ to the attribute x at time t. The random
walk vector r at time zero has all its components initialized to
zero except r〈0〉a = 1 if a = a∗. The parameter c is the restart
probability, it controls how often we should restart the random
walk at a∗, the higher the value for c the more restricted the
random walk is to the local neighborhood since the random
walker is more likely to keep restarting at node a∗. When
c = 0, the random walker starts at a∗ and explores the graph
until the process has converged.

A summary of the proposed method is described below.

Algorithm 1 Random Walk Link Prediction Algorithm
1. Input: A heterogeneous bibliographic network G =
〈V,E〉, an author a∗ ∈ V , and the parameters λ, α, β,
γ, δ, and c.
2. Create the new graph G′ = 〈V ′, E′,W 〉 based on the
graph modification process described in section 2.
3. Assign weights to the edges in G′ using the global im-
portance, local importance, frequency, and recency measures
weighted according to λ, α, β, γ, and δ.
4. Create the random walk vector r and set r〈0〉a = 1 if a∗ =
a and zero otherwise. Set r〈0〉x = 0 for all attribute nodes
x ∈ Vattri. Iterate to update r until values have converged.
5. Select all author nodes a′ where a′ /∈ Nauth(a∗). Order
the selected authors by decreasing r

〈∗〉
a′ , where r〈∗〉a′ is the

stationary random walk probability to a′.
6. Output the ordered list as the recommended potential co-
authors.

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

A. Dataset

We use the real world DBLP bibliographic dataset to
create our network, authors of papers published in the World
Wide Web (WWW) conferences from years 2001 to 2008
are considered as the author nodes in our network. For each
of the 2,505 authors, we get their publication history from
1991 to 2007. We use this information to build the modified
graph which contains a total of 76,814 topics, 52,136 cited
papers, and 7,738 venues. The attribute nodes with degree
one were not counted. The authors in the modified graph
were connected to an average of 8.39 co-authors and made
an average of 3.35 new co-author links in the succeeding time
period [2008, 2010]. Due to hardware constraints, the sampled
dataset is only a subset of the DBLP. However, this is already
a good sample of the larger network as the WWW conferences
attracts researchers from varied fields [16]. Moreover, this
dataset is similar to the one used by [19] in their tests.

B. Test Setup

The proposed algorithm is run on the modified network
for each author with at least one co-author and the top-k
candidate co-authors are predicted. The precision and recall
of the algorithm is used to benchmark the algorithm. Prec@k
= 1
|T |
∑
o∈T

|Pk(o)|
k where T is the training set and Pk(o)

is the set of authors in the list of top-k candidates that o
truly created a link to in the future. In other words, precision
measures the correct predictions among the top-k predicted
co-authors. Rec@k = 1

|T |
∑
o∈T

|Pk(o)|
|R(o)| where R(o) is the set

of all authors that o linked to in the future.
We also tested several benchmark models. The first set of

methods are based on structural properties. These are:
• ComNeigh: score(x, y) = |Γ(x) ∩ Γ(y)|, where Γ(x)

is the set of x’s neighbors in the homogeneous co-
authorship network.

• Jaccard: score(x, y) = |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| .



• Adamic: score(x, y) =
∑
z∈Γ(x)∩Γ(y)

1
log|Γ(z)| .

• Katz: score(x, y) =
∑
l=1...∞ βl · |path〈l〉x,y|, where β is

the damping factor to penalize longer paths and path〈l〉x,y
is the set of length-l paths between x and y. We consider
paths up to length 3 here.

Attribute-based similarity is also tested here by calculating
the cosine similarity (Cosine) of the attribute vectors corre-
sponding to the different authors, the attribute vector v for
an author a is a vector in k-space where k is the number of
unique attributes in our dataset and vi = 1 if a is linked to
the ith attribute, vi = 0 otherwise.

We also test our method against the meta path-based Path-
Predict framework described in [14]. In the tests conducted,
we use the hybrid topological features defined in the previ-
ous work and learn the weights assigned to these features
separately for two groups of authors: (1) highly productive
authors (authors who have published more than 10 papers
within [1991, 2007]), and (2) less productive authors (authors
with less than 10 papers in [1991, 2007]).

Finally, we test different variants of our proposed algorithm.
RW GL is used to denote our random walk algorithm based
on the new graph with edges weighted according to global and
local importance measures alone, trivial self-citation links are
not included in the modified graph. RW FR runs the proposed
algorithm on the same graph as RW GL with edges weighted
according to frequency and recency importance measures only.
RW GLFR denotes the same algorithm run on the new graph
with edges weighted using all importance measures, again
trivial self-citation links are not added to the graph. RW All
is the algorithm based on the new graph with edges weighted
using all importance measures and with trivial self-citation
links included. We also run a random walk with restart on the
original heterogeneous bibliographic network with links from
each node weighted uniformly, we refer to this as RW Naive.

C. Comparison of Different Methods

Table 1 lists the scores of the different methods based
on precision and recall. Among the different structure-based
measures, Common Neighbors and Jaccard’s Coefficient per-
formed best. The Katz index was the least effective among this
group. Overall, the attribute-based Cosine Similarity method
performed most poorly. Unsurprisingly, the straight-forward
implementation of random walk with restart on the original
network did not produce very good results either.

As expected, the meta path-based PathPredict framework
gave results that were better than all the other methods based
on network topology and attributes. It even achieved a better
recall score than RW GL although its precision score could
not beat that of any of the variants of our proposed method.
This seems to indicate that the important relations defined in
[14] can be better highlighted when captured in a modified
graph with edges biased according to measures of importance.

Running a random walk on the new graph weighted using
global and local importance measures alone already provides
results that are better than most of the other methods. In

Prec@5 Rec@5 Prec@10 Rec@10
ComNeigh 0.059 0.117 0.044 0.166
Jaccard 0.060 0.120 0.043 0.163
Adamic 0.058 0.111 0.042 0.151
Katz 0.052 0.101 0.039 0.141
Cosine 0.030 0.054 0.023 0.081
PathPredict 0.064 0.145 0.049 0.205
RW Naive 0.043 0.093 0.035 0.145
RW GL 0.070 0.137 0.052 0.189
RW FR 0.073 0.147 0.056 0.208
RW GLFR 0.072 0.147 0.055 0.206
RW All 0.080 0.161 0.058 0.221

TABLE I
COMPARISON OF RESULTS BETWEEN THE DIFFERENT METHODS. RESULTS

OF THE VARIANTS OF OUR PROPOSED ALGORITHM AND THE TOP
BENCHMARK ALGORITHM ARE IN BOLD-FACE.

our dataset, however, it is interesting to observe that using
just frequency and recency measure to weight the links is
already sufficient and RW FR actually scores slightly better
than RW GLFR. Finally, adding trivial self-citation links to
the network helps improve the predictive accuracy further.

Notice that in general, all methods scored relatively low,
this is due to the fact that the test dataset is comprised of
the 2,505 authors who have published papers in the WWW
conferences from years 2001 to 2008 only. All other authors
that should have been linked to these authors are not included,
thus the dataset loses a lot of structural information.

D. Acceptable Parameter Values

Our proposed algorithm takes several parameters as input,
namely: λ, α, β, γ, δ, and c. We discuss here the values that
were found to be acceptable for the different parameters in the
studied dataset and their effect on the prediction outcome.

The optimal set of values for the different parameters may
vary across data sets. In our experiments, we tested different
combinations of values for the parameters and we discuss here
the most acceptable values in terms of predictive accuracy.

Effect of λ setting. λ controls the overall importance of
structural links over attribute links. If λ is large, the random
walk is propagated primarily through the attribute links. On
the other hand, if λ is small, then structural links play a more
important role in the random walker’s traversal of the graph.
The most acceptable value for λ in our experiments is 0.6.
This is quite intuitive since attribute links generally outnumber
structural links and a larger value for λ distributes the weights
more evenly across the two kinds of links. However, we find
that the ideal value for λ in our experiments is the same as
the one reported by [19] in their paper even though our graph
contains more attribute nodes. This seems to indicate that only
important attribute nodes should be prioritized.

Effect of setting the different importance parameters.
For the parameters that determined the trade-off among the
different importance measures, the best setting found was
α = 0.20, β = 0.10, γ = 0.35, and δ = 0.35. It is
interesting to note that the importance measures based on



Fig. 4. The graph in (a) shows the degree distribution of the top-10 predicted
co-authors for all authors using the RW Naive algorithm, graph (b) shows the
same information for the RW All algorithm while graph (c) shows the degree
distribution of real future co-authors of all authors in the dataset.

frequency and recency of interaction play a more crucial role
in defining the overall importance of a link. It is also worth
noticing that while multiple interactions are important, the
recency of interaction is equally important in our setting.
Finally, we observe that more emphasis is placed on global
importance when determining the importance of a link. All
four importance measures contribute to the identification of
important links, albeit at varying degrees.

Effect of c setting. We find that the best value for c
is 0.7. This means that the local neighborhood is important
when searching for potential co-author candidates. We notice,
however, that the ideal value for c in our experiments is less
than the ones reported by [19] in their link recommendation
experiments. This may be due to the fact that the richer
information encoded in our new graph helps discriminate real
potential co-authors from the other nodes and thus the random
walk can be extended to a slightly more global neighborhood.

E. Degree Distribution of Candidate Co-authors

Fig. 4 shows the degree distribution of the predicted co-
authors and the real distribution of actual co-authors. Graph
(a) shows the degree distribution of the co-authors predicted by
RW Naive algorithm on the original graph. One can see that
the random walk tends to miss nodes with very low degrees,
which is its natural behavior [4]. The second graph shows
the degree distribution of the nodes predicted as potential

co-authors by the RW All algorithm, here there is less bias
towards nodes with low degrees which is a property we wish
to find in a good algorithm since in the real world authors
may co-author with both high degree and low degree authors.
Finally, graph (c) shows the degree distribution of real future
co-authors; a qualitative assessment shows that graph (b) and
(c) are more similar.

F. Case Study

To contrast and compare the different methods further, we
study the top-10 recommended co-authors for Juanzi Li, who
is a well-known researcher from Tsinghua University. Table 2
displays the list of recommended co-authors for the different
methods. We find that the structure-based methods, namely
Common Neighbors, Jaccard’s Coefficient, and Adamic-Adar
Score, produce lists that are similar to one another. For this
particular researcher, our method’s predicted list of co-authors
is also quite similar to the ones produced by the structure-
based methods. However, the true co-authors are ranked higher
in our list which suggests that attribute information and
importance measures can help in further discriminating the
true co-authors from the false candidates – from a set of
authors that have strong structural links to the query author.

The method based on the Katz Index also made the same
number of correct prediction as our proposed method, this is
to be expected in some cases as the Katz Index is based on
the number of paths between two nodes and this is analogous
to the random walk probability from one node to another
since the more paths there are between two nodes the higher
the random walk probability from one to the other. However,
from the overall score of the predictive accuracy of the Katz-
based method, we know that considering the number of paths
between two nodes does not always produce the best results.

In our case study, the attribute-based method only made
three correct predictions, this is indicative of the fact that
although attribute similarity can help in identifying future
collaboration, structural information is still important. For the
author Juanzi Li, four of the top ten predicted co-authors by the
algorithm based on the PathPredict framework were correct.
This is one better than the predictions made by the method
based on cosine similarity of attributes but slightly worse than
the predictions of the structure based methods. This highlights
a problem with the PathPredict approach. Although it is able
to learn, in general, the weights or importance of the different
meta paths, there are cases wherein a query author is connected
to many false as well as true candidates by important meta
paths and in such cases it can be difficult for the algorithm to
distinguish the true co-authors from the false ones (e.g. authors
that are distant from the query author in the social graph but
who share many attributes with the author or popular authors).

G. Average Run-time of Implementation

We computed the average number of iterations required for
the random walk to converge on all the author nodes in our
dataset with restart probability c ∈ {0.1, 0.2, ..., 0.9}.

As expected, a smaller value for c results in more iterations



RW All (6) ComNeigh (5) Jaccard (5) Adamic (5) Katz (6) Cosine (3) PathPredict (4)
Duo Zhang Duo Zhang Duo Zhang Duo Zhang Duo Zhang Duo Zhang Duo Zhang
Kuo Zhang Kuo Zhang Kuo Zhang Kuo Zhang MingCai Hong Risto Gligorov Kuo Zhang
Jing Zhang Min Zhang Limin Yao Limin Yao Jing Zhang Zharko Aleksovski MingCai Hong
MingCai Hong Limin Yao MingCai Hong Hwee Tou Ng Limin Yao Jing Zhang Limin Yao
Limin Yao Hwee Tou Ng Ming Zhang Wei Wei Kuo Zhang Yunxiao Ma Jing Zhang
Qiong Luo Wei Wei Hwee Tou Ng MingCai Hong Qiong Luo Limin Yao Hang Li
Min Zhang MingCai Hong Wei Wei Qiong Luo Hang Li Warner ten Kate Hwee Tou Ng
Yunhao Liu Qiong Luo Jing Zhang Jing Zhang Yunhao Liu Ming Mao Min Zhang
Wei Wei Jing Zhang Yunbo Cao Yunbo Cao Wei Wei Krisztian Balog Wei Wei
Hang Li Shenghuo Zhu Yunhao Liu Hang Li Wei-Ying Ma Mikhail Bilenko Yunbo Cao

TABLE II
TOP TEN PREDICTED CO-AUTHORS OF DIFFERENT METHODS FOR JUANZI LI. TRUE CO-AUTHORS ARE DISPLAYED IN BOLD-FACE, AND NUMBER OF

CORRECT PREDICTIONS ARE INSERTED IN PARENTHESES.

since the random walk explores a more global neighborhood.
When the restart probability is 0.1, the algorithm takes a
little more than 25 iterations while it only requires around
5 iterations when c = 0.9. It is worth noticing that in our
network, with close to 140k nodes, the random walk with
c = 0.1 takes only 25 iterations on average to run. On our
test machine, with a 2.26 Ghz dual core processor and 2 Gb
of memory, it took an average of 1.12 seconds to run the
Java implementation of the algorithm with restart probability
c = 0.1 for all authors. From this result, we can intuit that
the proposed method should run reasonably well for graphs
comprised of a few hundred thousand nodes to tens of millions
of nodes. For very large graphs, one can choose to use the
algorithm described in [18] to speed up the random walk.

VI. CONCLUSION AND FUTURE WORK

In this work, we defined an algorithm based on random
walks for link prediction on a heterogeneous bibliographic
information network. Specifically, we have shown the algo-
rithm’s efficiency can be increased by running it on a modified
heterogeneous bibliographic network. We have also shown that
global and local importance measures, as well as the frequency
and recency of interaction across links are all useful, within
varying degrees, for identifying the importance of an edge.

In future work, we wish to consider various loss [3] and
growth functions when calculating the frequency and recency
importance measures. The effectiveness of the various func-
tions can be tested on different bibliographic networks for us
to gain a better understanding of the decay and growth of
relationships in real world bibliographic networks.

Although multiple parameters allow a higher level of fine-
tuning, identifying the proper weight assignment can be a
problem. We wish to study ways to approximate ideal values
for parameters from certain network characteristics.

The authors would also like to test the performance of the
algorithm on the entire DBLP network. A generalized version
of the algorithm that works well on networks from various
domains should also be considered.

The proposed model can also be turned into a probabilistic
model to capture the correlations among links or nodes of

the graph. Furthermore, the model may be extended to tackle
similar problems such as the problem where the time of future
link creation is predicted; a recent work is found in [15].
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