
Patch Reviewer Recommendation in OSS Projects

John Boaz Lee
Information Systems and Computer Science Dept.

Ateneo de Manila University
Quezon City, Philippines

jlee@ateneo.edu

Akinori Ihara, Akito Monden, and Ken-ichi Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology

Ikoma City, Japan
{akinori-i, akito-m, matumoto}@is.naist.jp

Abstract—In an Open Source Software (OSS) project, many
developers contribute by submitting source code patches. To
maintain the quality of the code, certain experienced developers
review each patch before it can be applied or committed.
Ideally, within a short amount of time after its submission,
a patch is assigned to a reviewer and reviewed. In the real
world, however, many large and active OSS projects evolve at
a rapid pace and the core developers can get swamped with
a large number of patches to review. Furthermore, since these
core members may not always be available or may choose to
leave the project, it can be challenging, at times, to find a
good reviewer for a patch. In this paper, we propose a graph-
based method to automatically recommend the most suitable
reviewers for a patch. To evaluate our method, we conducted
experiments to predict the developers who will apply new
changes to the source code in the Eclipse project. Our method
achieved an average recall of 0.84 for top-5 predictions and a
recall of 0.94 for top-10 predictions.

Keywords-patch reviewer recommendation; CVS; random
walk; mining software repositories

I. INTRODUCTION

In OSS projects, a core group of developers are granted
certain privileges including the right to modify the source
code of the software. These individuals, also called “com-
mitters”, are usually responsible for the review of software
updates (patches) that other developers submit for inclusion
in the software [21] since they are seen as trusted members
of the community.

In large projects, committers usually have to review many
submitted patches [8]. Moreover, each review often takes a
non-trivial amount of time as the committer has to carefully
check the submitted code for bugs and compliance to coding
standards. For instance, in the PostgreSQL project , the
median time for a committer to review a patch is 508 minutes
which is roughly equivalent to a whole day’s work [9].
Because of this, “reviewers are usually overwhelmed with
the number of patches they have to review” [17] and at times
many patches in OSS development are even left unreviewed
[5], [21].

When a patch is submitted for review, it is not always
immediately clear to whom to assign it to for review. This
may be because the best candidate reviewer (the developer
with commit rights) is busy or may no longer be part of the

Figure 1. A graph can be used to represent a software project, committers
are linked to source codes they have worked on and similar source codes
can also be connected to one another.

project [6].
To help take some load off the developers’ backs, many

recent work have suggested methods to automate certain
parts of the software development process. Several papers
discuss methods that can automatically triage incoming bug
reports to developers with the skills to fix the bug [3],
[11], [15]. A text-based approach to identify the expertise
of developers for bug triaging is proposed in [15] while a
graph model is described in [11]. Similar work has also been
done to automatically detect the code that contains the bug
described in reports [25]. Many works have thoroughly
examined the patch review process. [17] notes that although
the reviewers are primarily responsible for patch reviews, the
process is only successful if there is adequate help from the
community. The mechanisms that defined an effective and
efficient peer review in certain OSS projects were studied in
[20] while [1], [4] studied the different types of commits.

Kagdi and Poshyvanyk introduced a method to recom-
mend a ranked list of developers to assist in performing soft-
ware changes [12]. It is not hard to imagine the use of their
method to recommend reviewers for a patch. Our method,
however, is different from [12] since we use a graph-based
approach in modeling commit history. We believe a graph,
containing developer and source code nodes as well as
their relations, can capture many important interactions in
a software project. Our contributions are as follows.

• A graph-based method for ranking/recommending po-

Figure 2. A namespace-based tree showing some packages and files in the
Eclipse project. The subtree is rooted at the package org.eclipse.debug.ui.

tential patch reviewers is proposed and tested.
• Experiments on data taken from a real world OSS

project demonstrate the efficiency of the proposed
method.

The rest of the paper is structured as follows. In the next
section we talk about the proposed method. In section 3, we
introduce the dataset, describe the experiments and elaborate
on the experimental results. We then conclude the paper with
some suggestions for future work.

II. PROPOSED METHOD

A. Network Based on Commit History

A Content Versions System (CVS) is a system that can
keep a record of all the changes made to a set of files
and is used by developers to collaboratively maintain the
source code for the project. Once a patch has been reviewed
and approved, the reviewer can “commit” the changes to
the corresponding source code. Our idea is to “profile” the
different committers by analyzing their commit history on
the different source codes in the project. We can then create
a system to recommend candidate reviewers for a software
patch by checking committer profiles.

In general, a software project can be modeled as a graph
G = 〈V,E〉 comprised of a vertex set V with n types
of nodes and an edge set E that represents a maximum
of m = n2 relations. In other words, V = ∪ni=1Vi, and
E = ∪mi=1Ei.

In this particular paper, we create an undirected network
with V = Vc ∪ Vs where Vc is the set of committers and
Vs is the set of source codes. Furthermore, E = Ec ∪ Er,
where Ec = {〈i, j〉 | i ∈ Vc and j ∈ Vs or vice versa} is
the set of edges between committers and code denoting an i
“commits to” j relationship. Er = {〈i, j〉 | i, j ∈ Vs} is the
set of edges connecting two source code entities capturing
the relationship i “is related to” j. An illustration is shown
in Fig. 1.

The first kind of relationship, Ec, is actually quite straight-
forward and can be observed by analyzing the CVS commit
history of a software project. Er, however, is a little ambigu-
ous as many different measures can be proposed to capture
similarity between source code files.

Figure 3. The similarities of source codes in three related modules based
on commits by different developers.

Fig. 2 shows an example of a tree that can be created
based on the namespaces of files in a project. In our
work, we use a simple heuristic to measure relatedness,
the similarity of two source code files is simply the length
of the shortest path between them in the tree divided by
two. For instance, AbstractLaunchHistoryAction.java and
ToggleWatchpointActionDelegate.java have similarity of 1
while the the latter’s similarity with WorkingSetSource-
Container.java is 2. An edge can then be drawn between
two source code entities if their similarity is below some
threshold. It is not hard to imagine the use of measures
based on LSI [24], LDA [10], or common committers too
and an interesting area for future work would be to identify
the efficiency of various source code similarity measures on
different datasets.

B. Committer Recommendation in Commit History Network

Given, as input, the commit history graph G = 〈V,E〉,
a source code s ∈ Vs, and a positive integer k ∈ N, our
task is to return a sequence of committers (c1, ..., ck), where
ci ∈ Vc for 1 ≤ i ≤ k, that are most qualified to review and
commit a patch on the source code s.

To validate our method, we create G based on the CVS
commit history of an OSS project for some time period t
and predict the set of committers (c1, ..., ck) for source code
s where 〈ci, s〉 /∈ E but is expected to appear in some future
time period t′. In other words, we validate the efficiency of
our recommendation method by predicting future committers
to a source code based on the current commit history graph.

We chose to predict future committers, because as men-
tioned above, committers are also often tasked with the
job of reviewing new patches. Also, the act of committing
changes to a file can be viewed as a sign of a committer’s
suitability to review patches for the said file.

C. Edge Weighting Method

We now describe two simple ways to add weights to the
two kinds of edges described earlier.

1. Source-Developer Edge. Developers may have the right
to commit to a large set of source codes but may spend
majority of their time on a certain subset. This should be
reflected by adding weights to the edges between source
codes and committers. w(c, s) is the function that calculates
the weight of an edge between a committer node c and
a source code node s. In this work, w(c, s) is simply the
aggregate number of lines changed by the committer c when
committing patches to the source code c during the time
window t. If w(c, s) = 0, then no edge exists between c
and s; otherwise, an edge with weight w(c, s) can be found
between nodes c and s.
2. Source-Source Edge. Not all sources are equally related,
some may be more related than others. To capture this, we
define w′(s, s′) that measures the similarity of two source
codes s and s′. In this work w′(s, s′) = l(s,s′)

2 where l(s, s′)
is the length of the path from s to s′ on the namespace-based
tree in Fig. 2. Similarly, no edge exists between s and s′ if
w′(s, s′) = 0; otherwise, edge 〈s, s′〉 has weight w′(s, s′).

At this point, we would like to talk briefly about the
reason why we chose this simple weight function instead
of using a text-based method like LSI [24]. In the ex-
periments we conducted, we actually used LSI to weight
edges between source codes but contrary to our intuition it
actually decreased the accuracy of our method. This led us
to believe that committers in our test dataset (Eclipse) are
actually responsible for logical groups of code partitioned
by namespace (or packages in Java).

To evaluate this hypothesis, we represented each source
code as a vector v with the component vs,i containing the
aggregate lines added by developer i to source s. We then
used MDS [13] to reduce the dimensions to 2-d. Fig. 3 shows
the result of MDS on the source codes in three related mod-
ules: *ant.internal.ui.dtd.util, *.ant.internal.ui.editor.outline,
and *.ant.internal.ui.console. It is interesting to note that
even though these are all UI related modules, different sets
of developers seem to be working on the source files in the
three modules. We believe that this seems to indicate that
the area of responsibility of an OSS project committer may
be more module-based although further studies should be
made to verify this.

D. Random Walk Based Algorithm for Reviewer Recommen-
dation

To be able to run a random walk on a graph, the graph
must first be turned into a Markov Chain [22]. To do this
we create a stochastic matrix by normalizing the weights of
all edges. Since our graph G is a connected, non-bipartite,
and undirected graph, it can be shown that the markov chain
over it is irreducible and aperiodic [2]. Thus, by the Perron-
Frobenius theorem [7], it is clear that the random walk on
G will converge to a stationary state which corresponds to
the left eigenvector of the stochastic matrix.

The normalized edge weight W (c, s) of the edge 〈c, s〉

from a committer c to a source code s is defined as follows.

W (c, s) =
w(c, s)∑

s′∈Ncode(c)
w(c, s′)

where Ncode(c) is the set of all source codes that are directly
connected to c.

The normalized edge weight W (s, ·) of an edge 〈s, ·〉 from
a source code s to another node can be defined as follows.

W (s, s′) =

λw′(s,s′)∑
ŝ∈Ncode(s) w

′(s,ŝ) : if |Ncode(s)| > 0 and

|Ndev(s)| > 0;
w′(s,s′)∑

ŝ∈Ncode(s) w
′(s,ŝ) : if |Ncode(s)| > 0 and

|Ndev(s)| = 0;
0 : otherwise.

W (s, c) =

(1−λ)w(c,s)∑
c′∈Ndev(s) w(c′,s) : if |Ndev(s)| > 0 and

|Ncode(s)| > 0;
w(c,s)∑

c′∈Ndev(s) w(c′,s) : if |Ndev(s)| > 0 and

|Ncode(s)| = 0;
0 : otherwise.

where Ndev(s) is the set of committers that are neighbors
of source code s and λ = [0, 1] is a parameter that is used
to indicate how much priority is given to a certain kind of
link.

To perform reviewer recommendation for a patch to be
applied to a source file s, we use a random walk process
similar to the process described in [14]. The process is
started from a single query source code s and once the
random walk has converged, the stationary random walk
probabilities from s to the committer nodes in the network is
considered the likelihood of a link occurring between s and
the respective nodes in the future. The higher the random
walk probability from s to a committer c is, the more suitable
c is as a potential reviewer of a patch for s as c’s activities
relate it closely to s.

To calculate the random walk probabilities from a query
node s∗ to the rest of the nodes in the network, we iteratively
apply the following process.

r〈t〉s = (1− p)
∑

s′∈Ncode(s)

W (s′, s)r
〈t−1〉
s′

+ (1− p)
∑

c′∈Ndev(s)

W (c′, s)r
〈t−1〉
c′ + pr〈0〉s

r〈t〉c = (1− p)
∑

s′∈Ncode(c)

W (s′, c)r
〈t−1〉
s′

where the vector components r〈t〉s and r〈t〉c hold the random
walk probabilities, after the tth iteration, from s∗ to source
code node s and committer node c, respectively. Before the
process is started, the vector r〈0〉 has all its components

initialized to zero except for r〈0〉s∗ which is set to 1. In
the succeeding time steps, the random walker then begins
to explore the graph. The parameter p here is the restart
probability and the higher its value the more likely the
random walker will restart at the query node which, in turn,
confines the random walk to a more local neighborhood
(relative to s∗).

Below is a short summary of the proposed method.

Algorithm 1 Random Walk Algorithm
1. Input: The network G = 〈V,E〉 based on CVS commit
history, a source code s∗ ∈ Vs, and parameters λ and p.
2. Assign weights to the edges in G and normalize values.
3. Create the random walk vector r and set r〈0〉s∗ = 1 and
r
〈0〉
s′ = 0. Set r〈0〉c = 0 for all committer nodes c ∈ Vc.

Iterate to update r until values have converged.
5. Select all committers c where c /∈ Ndev(s∗) and order
the selected nodes by decreasing r

〈∗〉
c , where r〈∗〉c is the

stationary random walk probability from s∗ to c.
6. Output the sequence as the recommended set of review-
ers for a patch in source code s∗.

E. Some Advantages of Graph Approach

To the best of our knowledge, this is the first work that
explicitly tackles the problem of recommending reviewers
for a software patch. While one can certainly apply the
algorithms for assigning bug fixers to the problem we study
here, we argue that a graph approach also has its advantages.
Studies have shown that graph-based metrics can tell us
important things about a piece of software [18].

If a patch consists of changes to a single source file, it
is intuitive to identify the reviewer from among the past
reviewers assigned to the source file. However, as is the
case often, a patch consists of changes to multiple source
files and often times no single reviewer has had the chance
to review all the source files before.

In such a scenario, a graph approach is quite suitable. All
we would have to do is replace the query node s∗ with a set
of query nodes S, and distribute the starting random walk
probabilities among all si ∈ S, for 1 ≤ i ≤ |S|, such that∑|S|
i=1 r

〈0〉
si = 1. Our approach would then still be able to

identify the developers that are most suitable to review the
patch given all the affected source files. Note that S does
not necessarily have to contain a uniform distribution and
can depend on the importance of the affected source files.

Meneely et al. [16] discovered that a developer network
can be used as an estimate for developer collaboration. While
developer collaboration is important in reviewer recommen-
dation, an advantage of our graph approach is that the system
can be quickly extended to include other types of nodes to
allow for even richer analysis.

Figure 4. Average number of iterations for the random walk process to
reach the stationary state.

III. EXPERIMENTS AND RESULTS

A. Dataset

We gathered all commit logs for patches committed to the
Eclipse project between June 30, 2005 and June 29, 2006.
We chose this time-frame because it starts with a major
release of Eclipse and covers the time period until the next
major release. The total number of commits made to the
project was around 26,800. We also downloaded the entire
June 29, 2006 source code snapshot of the project. Over
the one year period, 56 different committers made changes
to 6,178 files found in the snapshot that we downloaded.
The graph that we built had around 10,500 edges and 6,234
nodes. An edge was drawn between two source files if they
were connected by a path of at most length 2 (meaning they
belonged to the same package).

Our snapshot of the Eclipse project contained source files
grouped into 608 packages, the largest package contained
203 source files. Each committer committed changes to
files in 29 different packages on average. A total of 26,794
commits were made during the time period and an average
of around 5 different committers committed patches to each
source file which shows that there is a substantial amount
of overlap in the activities of the developers.

B. Experimental Results
We use the proposed method to recommend the top-k

candidate reviewers for all source codes in the data set and
used precision and recall to measure the relevance of the
recommendations. Prec@k = 1

|S|
∑
s∈S

Pk(s)
k where S is

the set of source codes and Pk(s) is the set of committer
nodes that the algorithm recommended correctly, i.e. these
committers did indeed commit changes to the source code s
in some future time interval. Precision captures the number
of correct recommendations out of all k recommendations.
Recall, on the other hand, can be defined as rec@k =
1
|S|

∑
s∈S

Pk(s)
R(s) where R(s) is the entire set of committers

that eventually committed to the source code s; this captures
the number of correct recommendations over all possible

Prec@5 Rec@5 Prec@10 Rec@10
Sep 2005 (1) 0.227/0.241 0.943 0.116/0.120 0.954
Oct 2005 (2) 0.211/0.228 0.932 0.110/0.114 0.963
Nov 2005 (1) 0.172/0.213 0.801 0.089/0.107 0.828
Dec 2005 (1) 0.194/0.228 0.768 0.106/0.114 0.837
Jan 2006 (5) 0.167/0.211 0.797 0.089/0.106 0.841
Feb 2006 (4) 0.167/0/219 0.756 0.104/0.109 0.951
Mar 2006 (4) 0.164/0.212 0.773 0.100/0.106 0.945
Apr 2006 (1) 0.197/0.212 0.911 0.103/0.106 0.960
May 2006 (1) 0.191/0.206 0.930 0.102/0.103 0.992
Jun 2006 (2) 0.195/0.216 0.900 0.107/0.108 0.991
Weighted Ave 0.183/0.215 0.843 0.101/0.107 0.937

Table I
PRECISION AND RECALL FOR RECOMMENDED COMMITTERS IN

DIFFERENT MONTHS. NUMBER OF PREVIOUS MONTHS USED TO BUILD
THE GRAPH IS IN PARENTHESES. MAXIMUM POSSIBLE PRECISION,
WHICH IS THE PRECISION SCORE IN THE OPTIMAL CASE, IS ALSO

SHOWN FOR COMPARISON.

correct recommendations. We use precision and recall
in lieu of accuracy because, in this case, true negatives
outnumber true positives substantially. An example of an
inefficient method with high accuracy is one that predicts
zero new committers for all source files since there is only
a small number of new committers for each source file.

We attempted to predict all new committers to the source
codes for each month from September 2005 to June 2006.
We did not do the experiment for the months of July and
August because there was insufficient prior data to build the
graph. For each month, we built a graph based on commit
history from the previous months and used the proposed
method to predict committers to each of the source code in
the current month. Predicted committers for a source code
are those who have never committed to it in the commit
history of the previous months which we use to build the
graph.

Table 1 displays the precision and recall for the top-k
recommendations for each month. Note that in most cases,
we only use commit history from the last 1 or 2 months to
build the graph for recommendation. This may seem counter
intuitive at first as less information about past activities could
affect our prediction of future activities. However, in the
Eclipse dataset, we have found that using the most recent
history actually improves the recommendation. This may be
because it captures the current profile of the committers. This
seems to show that the area of responbility of developers in
the project tend to evolve over time.

It is interesting to note that the method already predicts
around 84% of all committers correctly in the top-5 rec-
ommendations, this is further increased to 94% for top-10
recommendations.

As expected, precision is rather low since, on average,
only one new committer changes each source file. For top-
5 predictions, the average number of true positives is 1.
Even though around 80% of all recommended developers

are considered false positives since they did not edit the
code during the test period, their activities are actually quite
similar to real committers. In fact, 33% of all the false
positives in September committed to the source code much
later. On the other hand, true negatives account for 77%
of all non-recommended reviewers which shows the strong
negative predictive value of the model.

In lieu of precision, one good measure of efficiency in this
case is search length which can be defined as the average
rank of each successfully recommended committer. A good
algorithm would have search length close to 1 (in this case)
which means the true positives were ranked highly in the
recommendation. Our method had a search length of 2.11
and 2.66 for k = 5 and k = 10, respectively. This shows
that most true positives were ranked high in the system’s
recommendations.

In our experiments, we found the ideal value for the restart
probability c to be between 0.7 and 0.95 which suggests
that the local neighborhood is more important in predicting
future committers. We also found the ideal value for λ
to be from 0.7 to 0.9 which shows that in our case the
links connecting source files are more important than the
edges between developers and source files. We arrived at
the optimal values by testing the proposed method on all
possible combinations of c and λ from the range (0.0, 1.0)
using 0.5 intervals.

C. Random Walk Convergence

Fig. 4 shows the average number of iterations needed for
the random walk to converge. It can be observed that an
average of around 35 iterations is needed for the random
walk with restart probability c = 0.1 to converge while this
number drops to around just 5 iterations for higher values
of c.

On our test machine which had a 2.67GHz Intel Core
i5 processor and 4GB of RAM, an implementation of the
proposed algorithm predicted the future committers for all
6,178 source files in less than 3 seconds on average. From
this, we can intuit that the method should be able to scale
to graphs with a few million nodes. On larger graphs, one
can always use the method described in [23] to increase the
speed of the random walk process.

IV. CONCLUSION AND FUTURE WORK

In this paper, we perform a preliminary study for the
problem of recommending patches to reviewers in an OSS
project. We use data from the Eclipse project and built a
simple model to predict future committers to source codes
in the project. We have found that the model can already
correctly predict 84% of all committers given its top-5
recommendations.

In the future, we would like to improve the model further
by studying the actual text content of each patch committed
by developers to identify the “topics” that each committer

is interested in. This will allow us to identify the expertise
of each committer and can be used not only for reviewer
recommendation but also for bug triaging since we can link
the topics found in a bug report to developers with matching
experience. By studying the textual information, we can also
assess the importance of each patch. For instance, a general
patch applied to multiple source files should be deemed less
important than another that contains an implementation of a
complex algorithm committed to a single source file.

In the current graph, only committers are included, future
studies should also include patch submitters as well as
it would be useful too to recommend some of them as
reviewers.

Furthermore, we would like to refine the method in order
to predict the actual developer who committed each patch. In
our current approach, we simply predict whether a developer
will commit to a source file in the future or not. Also, at the
moment, there is no way to determine whether a developer
is committing code written personally or code submitted as
a patch by somebody else; this is something we’d like to
address in future work.

Another thing we plan to do is to design more complex
measures that can better capture the similarity between nodes
in a commit history graph. In particular, we would like
to investigate process metrics as these stay robust even as
the codebase evolves [19]. We also plan to test the model
on more software systems, including proprietary projects.
Finally, a possible next step is to indicate the probability of
a reviewer committing a mistake when assigned to review a
certain patch.

It should be noted that in this preliminary study the
graph modeling an OSS project is quite simplistic. However,
one can easily imagine a graph containing other entities
like topics, language, and even additional relationships like
developer-developer links. Even then, we believe the general
approach that we have discussed here should still be suitable
for graphs that describe more complex relationships in OSS
projects.

ACKNOWLEDGMENT

J.B. Lee would like to thank NAIST for sponsoring his
visit to the Software Engineering Lab. We thank Satoshi
Uchigaki for help with data gathering. This research is
conducted as part of Grant-in-Aid for Young Scientists (B)
25730045, and for Scientific Research (B) 23300009 by the
Japan Society for the Promotion of Science (JSPS). It is also
supported in part by the Ateneo de Manila University.

REFERENCES

[1] A. Alali, H. Kagdi, and J.I. Maletic. What’s a Typical Commit?
A Characterization of Open Source Software Repositories. In
Proc. of ICPC’08, pp. 182-191, 2008.

[2] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin. Non-
backtracking random walks mix faster. Commun. Contemp.
Math., 9:585-603, 2007.

[3] J. Anvik, L. Hiew, and G.C. Murphy. Who should fix this bug?
In Proc. of ICSE’06, pp. 361 - 370, 2006.

[4] O. Arafat and D. Riehle. The Commit Size Distribution of
Open Source Software. In Proc. of HICSS’09, pp. 1-8, 2009.

[5] C. Bird, A. Gourley, and P.T. Devanbu. Detecting Patch Sub-
mission and Acceptance in OSS Projects. In Proc. of MSR’07,
pp. 26-29, 2007.

[6] C. Bird, A. Gourley, P.T. Devanbu, A. Swaminathan, and G.
Hsu. Open Borders? Immigration in Open Source Projects. In
Proc. of MSR’07, pp. 6, 2007.

[7] P. Blanchard and D. Volchenkov. Random Walks and Dif-
fusions on Graphs and Databases: An Introduction. Springer
(2011).

[8] G. Canfora and L. Cerulo. Supporting change request assign-
ment in open source development. In Proc. of SAC’06, pp.
301-310, 2010.

[9] S. Fujita, M. Ohira, A. Ihara, and K. Matsumoto. An Analysis
of Committers Toward Improving the Patch Review Process in
OSS Development. In Proc. of ISSRE’10, pp. 369-374, 2010.

[10] T. Hofmann. Probabilistic Latent Semantic Analysis. In Proc.
of SIGIR’99, pp. 50 - 57, 1999.

[11] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage
with bug tossing graphs. In Proc. of ESEC/FSE’09, pp. 111-
120, 2009.

[12] H. Kagdi and D. Poshyvanyk. Who Can Help Me with this
Change Request? In Proc. of ICPC’09, pp. 273-277, 2009.

[13] J.B. Kruskal. Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika, 29(1):
1-27, 1964.

[14] J.B. Lee and H. Adorna. Link Prediction in a Modified Het-
erogeneous Bibliographic Network. In Proc. of ASONAM’12,
2012.

[15] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning Bug Re-
ports using a Vocabulary-Based Expertise Model of Develop-
ers. In Proc. of MSR’09, pp. 131-140, 2009.

[16] A. Meneely, M. Corcoran, and L. Williams. Improving De-
veloper Activity Metrics with Issue Tracking Annotations. In
Proc. of ICSE’10, pp. 75-80, 2010.

[17] M. Nurolahzade, S.M. Nasehi, S.H. Khandkar, and S. Rawal.
The Role of Patch Review in Software Evolution: An Analysis
of the Mozilla Firefox. In Proc. of IWPSE-Evol’09, pp. 9-18,
2009.

[18] M. Pinzger, N. Nagappan, and B. Murphy. Can Developer-
Module Networks Predict Failures? In Proc. of FSE’08, pp.
2-12, 2008.

[19] F. Rahman and P.T. Devanbu. How, and why, process metrics
are better. In Proc. of ICSE’13, pp. 432-441, 2013.

[20] P.C. Rigby, D.M. German, and M.-A. Storey. Open source
software peer review practices: a case study of the apache
server. In Proc. of ICSE’08, pp. 541-550, 2008.

[21] P.C. Rigby and M.-A. Storey. Understanding Broadcast Based
Peer Review on Open Source Software Projects. In Proc. of
ICSE’11, pp. 541-550, 2011.

[22] F. Spitzer. Principles of Random Walk. Springer, 2001.
[23] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with

restart and its applications. In Proc. of ICDM’06, pp. 613-622,
2006.

[24] Q. Wang, J. Xu, H. Li, and N. Craswell. Regularized Latent
Semantic Indexing. In Proc. of SIGIR’11, pp. 685-694, 2011.

[25] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be
fixed? More accurate information retrieval-based bug localiza-
tion based on bug reports. In Proc. of ICSE’12, pp. 14-24,
2012.

